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WELCOME 
 
Dear Attendees, 
 
A warm welcome to the Cybathlon Symposium 2016, the scientific conference of the Cybathlon, 
both organized for the first time in Zurich, Switzerland! The Cybathlon is a championship for pilots 
with physical disabilities to showcase state-of-the-art assistive devices in races inspired from activities 
of daily living. It thereby aims to illustrate technological capabilities and to reduce barriers between 
people with disabilities, technology developers, and the wider public.  
 
In this context, the Cybathlon Symposium offers a unique platform to review the most recent 
developments in each of the six disciplines of the Cybathlon, and to openly discuss the main 
challenges in the field of assistive technologies. The Cybathlon Symposium brings together 
international researchers from different scientific backgrounds, featuring six keynote lectures by 
renowned experts and opinion leaders, as well as eight short presentations by young talents. A 
podium discussion – involving end-users and representatives from academia, industry, and politics – 
will highlight opportunities and challenges in the field of assistive technologies, its industrial transfer, 
and user acceptance. In addition, an interactive poster session will promote exchange and discussions 
between junior and more advanced researchers. 
 
We are delighted to announce that the best abstracts of the Cybathlon Symposium, as identified by 
a panel of experts, will be shortlisted for special issues in either the Journal of NeuroEngineering and 
Rehabilitation or the IEEE Robotics and Automation Magazine, focusing on the design, development, 
and evaluation of assistive technologies. 
 
We thank you all for coming and for contributing to this unique event. We also thank our sponsors for 
making this event possible, and wish you an intellectually stimulating and inspiring Cybathlon 
Symposium! 
 
Sincerely, 
 
 
 
 
 
 
  

 

 

And the organizing committee: 
Gunda Johannes, Stefan Schrade, Denise Schumacher, Ann Van der Aa, and Peter Wolf 

  

Roger Gassert 
ETH Zurich 

Chair 

Olivier Lambercy 
ETH Zurich 
Co-Chair 
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VENUE 
The Cybathlon Symposium 2016 is held at the conference center Schluefweg (Konferenzzentrum 
Schluefweg, Schluefweg 10 in 8302 Kloten, Switzerland) next to the SWISS Arena. 
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HOW TO GET THERE 
  

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

TRANSPORTATION 
The timetables for trains and buses can be found on the website of the Swiss Federal Railways (SBB) 
at http://www.sbb.ch/en/. 
 
Passengers with reduced mobility can obtain help with getting on and off trains by calling SBB Call 
Center Handicap: 0800 007 102 (calls are free within Switzerland; service hours are between 6am and 
10pm). More information can also be found at http://www.sbb.ch/en/station-services/passengers-with-
reduced-mobility/sbb-call-center-handicap.html. 
 
 

INTERNET ACCESS 
Free wireless Internet access is provided.  
Log into SSID: CYBATHLON with password: ethcyba2016. 
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PROGRAM 
 

08h00 – 09h00 Registration and poster setup 

09h00 – 09h10 Welcome address  

09h10 – 09h50 Hugh Herr, PhD (MIT) KEYNOTE 
Leg Prosthetics 

09h50 – 10h00 Louis Flynn (Vrije U Brussels) T01 

10h00 – 10h10 Sasha Blue Godfrey (IIT Genova) T02 

10h10 – 10h50 Coffee break & poster session  

10h50 – 11h30 Jon Sensinger, PhD (U New Brunswick) KEYNOTE 
Arm Prosthetics 

11h30 – 12h10 Michael Goldfarb, PhD (Vanderbilt U) KEYNOTE 
Exoskeletons 

12h10 – 12h20 Amber Emmens (U Twente) T03 

12h20 – 12h30 Arun Jayaraman (RIC and NWU) T04 

12h30 – 14h30 Lunch break & poster session 

14h30 – 15h10 Ronald J. Triolo, PhD (Case Western U) KEYNOTE 
Functional Electrical Stimulation 

15h10 – 15h50 José del R. Millán, PhD (EPFL) KEYNOTE 
Brain-Computer Interfaces 

15h50 – 16h00 Juliana Guimarães (U Brasilia) T05 

16h00 – 16h10 Karina Statthaler (Graz U Technology) T06 

16h10 – 16h50 Coffee break & poster session 

16h50 – 17h00 Marcello Ienca (U Basel) T07 

17h00 – 17h10 Shuro Nakajima (Wakayama U) T08 

17h10 – 17h50 Rory A. Cooper, PhD (U Pittsburgh) KEYNOTE 
Powered Wheelchairs 

17h50 – 18h30 Podium discussion 
Panel: Pascale Bruderer, Gery Colombo, Rory A. Cooper, Kelly James,  
Robert Riener, Alan Winfield  
Moderator: Janine Geigele 

18h30 – 20h00 Apéro riche 

19h30 – 21h30 PluSport Exhibition  
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PODIUM DISCUSSION 
 

We invite all participants to round off the symposium with a podium discussion on the following topics: 
Opportunities and challenges in the field of assistive technology, user acceptance, 
industry transfer, and financing. 
 
Six distinguished participants from various backgrounds related to assistive technology will discuss the 
matters at hand: 
 
Pascale Bruderer, lic. phil.  

Politician, member of the Swiss Council of States, president of Inclusion Handicap, self-
employed business consultant, and university lecturer on disability law. 

 
Gery Colombo, Ph.D. 

CEO and founder of Hocoma AG, and president of the International Industry Society in 
Advanced Rehabilitation Technology (IISART). 

 
Rory A. Cooper, Ph.D. 

FISA & Paralyzed Veterans of America Chair, distinguished professor of the Department of 
Rehabilitation Science and Technology, professor of Bioengineering, Physical Medicine and 
Rehabilitation, and Orthopedic Surgery at the University of Pittsburgh, and Founding Director 
and VA Senior Research Career Scientist of the Human Engineering Research Laboratories. 
 

Kelly James, P.Eng. 
CEO and founder of Biomech Designs Ltd., inventor of the C-Brace and C-Leg, which were 
turned into market-ready products through Ottobock and worn by thousands. 

 
Robert Riener, Ph.D. 

Professor of Sensory-Motor Systems at ETH Zurich and the Medical Faculty of the University of 
Zurich, head of the Department of Health Sciences and Technology, ETH Zurich, and initiator 
and organizer of the Cybathlon. 

 
Alan Winfield, Ph.D. 

Director of the Science Communication Unit and Professor at UWE Bristol, Member of the 
Ethics Advisory Board of the EC Human Brain Project, Co-chair of the General Principles 
committee within the IEEE Global Initiative on the Ethical design of Autonomous Systems. 

 
Janine Geigele will moderate the discussion. She will also moderate the Cybathlon. 
 
The floor will be opened for questions from the audience at the end of the discussion. 
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EXHIBITION:  
«FROM CAPTAIN HOOK  

TO IRON MAN» 
Let PluSport and its partners take you on a journey from the dawn of assistive technologies right up to 
the present day. In this captivating exhibition with about 50 exhibits divided into four sections you will 
learn how prosthetics and wheelchairs have developed and evolved over the years, and the immense 
changes that these technologies have undergone. 
 

        Antiquity                 Everyday Life + Sports              Modernity          Photos + Videos  
																	 	 	 	 	 	
	
	
	 	 	 	 	 	 	
	
	
	
	

																														Rarities																													Assistance	for	sport	&	everyday	life														Electronics	&	Robotics												Worldwide	&	Caricatures	
							

Special Invitation for the tour for symposium participants 
Following the symposium, we cordially invite you to join us on our guided tour of our extraordinary 
exhibition, located in the tent at the entrance to the premises of the outdoor pool (next to the 
conference center). Our two ambassadors, Armin Köhli and Rüdiger Böhm, will be happy to 
accompany you through the exhibition and provide you with a more in-depth look into the different 
epochs of assistive technologies with stories and anecdotes. 
Take advantage of this unique opportunity and visit us on Thursday, 06.10.16, from 19.30 to 
21.30, in the exhibition tent «From Captain Hook to Iron Man». 

Your professional guides 

 

      	

 
PluSport: Your Partner for the Additional Programme at Cybathlon  
Apart from creating a competitive platform for the development of novel 
assistive technologies that are compatible for daily use, Cybathlon aims to 
contribute to the decrease of barriers between people with disabilities, the 
public, and technological innovators. Both the newest technologies and 
methods of assistive aids and an understanding of the everyday problems of 
people with disabilities are required to improve their lives sustainably. 
PluSport, the umbrella organization and competence center for sports for disabled people, has been 
supporting disabled people since 1960:  they should be able to pursue sports regardless of their 
condition. PluSport enables them to enjoy integration, joy, and success through the means of exercise 
in sports. Their ability to pursue sports is strongly affected by modern technological advances, which is 
particularly interesting for our Paralympic professional athletes. 

Rüdiger Böhm, Wangen / SZ 
Ski Alpin, Para-Triathlon, Author 
www.ruedigerboehm.ch 
www.facebook.com/nolegsnolimits 

Armin Köhli, Hinteregg / ZH 
Ex-Paralympics-Athlete, Cyclist, 
Journalist 
armin@tourdarmin.ch 
www.tourdarmin.ch/stumpsandcranks 

Facts & Figures PluSport 
+ 12‘000 Members 
+ 2‘500 Coaches and 1‘500 Volunteers 
+ 30 Employees at the Head Office 
+ 90 Sports Clubs and 100 Sports Camps 
+ 50 Training Courses 
+ 20 Leading Athletes and 40 Young Talents 
+ 20 Projects and Events 
+ Co-founder of Swiss Paralympics 
Objectives 
+ Integration through sports 
+ Targeted youth development in mass and top-class 

sports 
+ Effective partnerships through corpotrate 

responsibility programmes 
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CYBATHLON 
 

The Cybathlon main event will take place on October 8, in the SWISS Arena, Kloten, Switzerland. 

Tickets can be bought here at the Cybathlon Symposium at the registration desk from 12h00 to 
20h00. 

 

 

 

 

 

 

 

PROGRAM: 

9h00 Doors open 

10h00 Opening address  

 Qualification races:  

 Powered Arm Prosthesis Race 

 BCI Race 

 Powered Wheelchair Race  

 FES Race 

 Powered Exoskeleton Race 

 Powered Leg Prosthesis Race 

 Show acts and interviews with teams and experts 

14h00 Main address  

 Final races and medal ceremonies:  

 Powered Arm Prosthesis Race 

 BCI Race 

 Powered Wheelchair Race  

 FES Race 

 Powered Exoskeleton Race 

 Powered Leg Prosthesis Race 

 Show acts and interviews with teams and experts 

18h00 Closing address 
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K01 

On the Design of Bionic Leg Devices:  
The Science of Extreme Interface 

Hugh Herr, PhD 

Professor and head of Biomechatronics research group at the MIT Media Lab 

Short Biography 
Hugh Herr, who heads the Biomechatronics research group at the MIT 
Media Lab, is creating bionic limbs that emulate the function of natural limbs. 
In 2011, TIME magazine coined Herr the “Leader of the Bionic Age” because 
of his revolutionary work in the emerging field of biomechatronics–techno-
logy that marries human physiology with electromechanics. A double 
amputee himself, he is responsible for breakthrough advances in bionic 
limbs that provide greater mobility and new hope to those with physical 
disabilities. Herr is the author and co-author of over a 150 peer-reviewed 
papers and patents, chronicling the science and technology behind his many 
innovations. These publications span the scientific fields of biomechanics 
and biological motion control, and the technological innovations of human 
rehabilitation and augmentation technologies. As published in the Journal of 
Neuroengineering and Rehabilitation in 2014, Herr’s team advanced the first 
autonomous exoskeleton to reduce the metabolic cost of human walking, a 
goal that has eluded scientist for over a century. In the field of human 
rehabilitation, Herr’s group has developed gait adaptive knee prostheses for 
transfemoral amputees and variable impedance ankle-foot orthoses for 
patients suffering from drop foot, a gait pathology caused by stroke, cerebral 
palsy, and multiple sclerosis. He has also designed his own bionic legs, the 
world's first bionic lower leg called the BiOM Ankle System.  As published in 
the 2012 Proceedings of the Royal Society, the BiOM Ankle System has 
been clinically shown to be the first leg prosthesis to achieve biomechanical 
and physiological normalization, allowing persons with leg amputation to 
walk with normal levels of speed and metabolism as if their legs were 
biological once again. 

Abstract 
Critical to the advancement of bionic legs that emulate or extend normal physiological function is the 
design of extreme interfaces between the human body and electromechanics.  In this talk, I describe 
research activities underway to advance the science of mechanical and electrical interface design.  I 
present novel exoskeletal, orthotic and prosthetic limbs that behave dynamically like their biological 
counterpart, peripheral neural implants that serve as an electrical interface with the external bionic 
limb, and novel socket and bracing technology for the mechanical attachment of the bionic device to 
the residual limb.  For each of these interfaces, anatomical, biomechanical and neuromechanical 
models are employed in the motivation of subsystem design.  The therapeutic distinction of bionic leg 
devices to increase walking speed, reduce gait metabolism, enhance stability, and mitigate 
musculoskeletal stress is examined. Finally, critical areas of future research are discussed that must 
be advanced to step towards the next generation of bionic leg systems.  
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K02 

Paradigm Changes in Upper Limb Prostheses:  
From New Shifts in Technology to New Definitions of Success   

Jon Sensinger, PhD 

Associate Director of the Institute of Biomedical Engineering, University of New Brunswick 

Short Biography 
Jon Sensinger is the associate director of the Institute of Biomedical 
Engineering and an associate professor in Electrical Engineering at the 
University of New Brunswick. He is also a co-founder of Coapt LLC, a 
company that sells controllers for prostheses. His research focuses on the 
design, control, and human interaction of prostheses and exoskeletons. In 
the past this has included the mechatronic design of motors and 
transmissions to develop small, lightweight prosthetic arms. His recent 
research interests include developing computational motor control models of 
how humans control prosthetic devices, and the design and control of robotic 
prosthetic legs and exoskeletons. 

Abstract 
Upper-limb prostheses are a poor substitute for the human arm—so much so that many persons with 
an amputation choose to live their lives without the added weight of a portable vice hanging on them 
all day long. But there is also much promise, both in the field itself, and when we look at the 
technologies being developed in related fields such as smart phones and autonomous cars. This talk 
will briefly cover some of the game-changing paradigm shifts happening in the field, including 
osseointegration and peripheral nerve innervation, followed by recent advances in low-tech devices, 
high-tech devices, and control strategies. It will end by introducing a relatively new framework, 
computational motor control, which provides a causal model for why humans make the behavioral 
control decisions they do in light of the control and sensory uncertainty with which they interact. This 
framework offers the promise to improve the control and feedback devices available for use in 
prostheses by pinpointing optimal solutions to complex problems. 

References 
[1] Lenzi, Lipsey, and Sensinger (2016). The RIC arm – a small, anthropomorphic transhumeral prosthesis. 

IEEE Transactions on Mechatronics. DOI: 10.1109/TMECH.2016.2596104. 

[2] Johnson, Kording, Hargrove, and Sensinger (2014). Does EMG control lead to distinct motor adaptation? 
Frontiers in Neuroscience, DOI: 10.3389/fnins.2014.00302. 
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K03 

Powered Exoskeletons and Their Emerging Promise  
for Providing Assistance and Therapy to Individuals  

With Neuromuscular Impairment 

Michael Goldfarb, PhD 

H. Fort Flowers Professor of Engineering, Vanderbilt University 

Short Biography 
Michael Goldfarb, PhD, is the H. Fort Flowers Professor of Mechanical 
Engineering at Vanderbilt University, with secondary appointments as a 
Professor of Electrical Engineering, and Physical Medicine and 
Rehabilitation. Dr. Goldfarb’s work focuses on the development of assistive 
devices that improve quality of life for people with physical disabilities. Dr. 
Goldfarb has published approximately 200 papers on related topics, 
including ones that were awarded best-paper awards in 1997, 1998, 2003, 
2007, 2009, and 2013. Recent work includes the development of robotic 
limbs for upper and lower extremity amputees, and lower limb exoskeletons 
for individuals with SCI and stroke. 

Abstract 
Powered exoskeletons, which have been an elusive goal of robotics researchers for decades, have 
recently become technologically viable, and as such have recently begun to emerge in both research 
laboratories and the commercial marketplace. Such exoskeletons enable a number of new and 
potentially impactful possibilities for improving the quality of life and quality of care for individuals with 
neuromuscular impairment (e.g., individuals with paresis or paralysis from SCI, stroke, MS, CP, and 
TBI). Depending on the nature with which a powered exoskeleton interacts with a patient, the 
exoskeleton can serve as an assistive device for improving or enhancing the mobility and/or 
functionality for the conduct of activities of daily living; or can serve as a therapeutic device for 
facilitating functional or neuromuscular recovery in individuals capable of such recovery; or in some 
cases, can provide both functions. Despite the recent emergence of multiple commercially-available 
powered exoskeletal devices, the potential of such devices for providing improved functionality in the 
home and community, and their potential for facilitating recovery, remains largely unknown. Further, 
methods and best practices for human interaction (i.e., the nature of man-machine interaction) to 
provide these respective objectives in various patient populations also remains an area of knowledge 
that is relatively unexplored and largely unknown. As such, despite impressions given by rapidly 
emerging hardware, the field is still in early stages, and realization of the full potential of powered 
exoskeletons will require the collective efforts and contributions of many researchers over the next 
several years. This talk will focus on some experiences with powered exoskeletons with individuals 
with SCI and stroke, in both the context of an assistive device (for improving mobility), and that of a 
therapeutic device (for facilitating recovery), and provide some recent outcomes and results from 
investigations of both. 
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K04 

Implanted Neuroprostheses: Technical and Clinical Challenges 
to Enhancing Standing, Walking and Seated Posture, Balance 

and Mobility after Paralysis 
Ronald J. Triolo, PhD 

Professor, Case Western Reserve University and  
Senior Research Career Scientist, US Department of Veterans Affairs 

Short Biography 
Dr. Triolo received MS and PhD degrees in Biomedical Engineering from 
Drexel University in Philadelphia PA, where he was Director of Research for 
Shriners Hospitals until 1994. He is the founding Director of the Center for 
Advanced Platform Technology and a Senior Research Career Scientist for 
the US Department of Veterans Affairs, as well as a Professor of 
Orthopaedics and Biomedical Engineering at Case Western Reserve 
University in Cleveland OH. Dr. Triolo currently leads NIH, VA and DARPA 
funded research programs to develop and assess assistive technologies to 
enhance independent upright and seated mobility, balance and sensation to 
individuals with CNS dysfunction or limb loss. 

Abstract 
Assistive technologies that communicate directly with the peripheral nervous system can facilitate or 
restore the independent performance of many functions compromised by CNS disease or trauma. 
Implanted neural stimulators have allowed dozens of individuals with low cervical or thoracic spinal 
cord injuries to exercise, transfer, stand and step under the power of their otherwise paralyzed 
muscles, and new generations of implantable technologies with enhanced abilities to selectively 
activate isolated components within a compound nerve are improving the quality of clinical outcomes. 
Short- and long-term clinical feasibility trials of first and second generation implanted systems for 
lower extremity and core hip/trunk function after paralysis indicate that the technology is reliable, 
recipients maintain the functional gains observed at discharge, and devices are routinely utilized for 
exercise and function. Major challenges facing wider spread dissemination of the technology currently 
being addressed include integrating neural stimulation with voluntary muscle activity or external 
assistive devices, developing biologically inspired control systems to automatically regulate standing 
or seated posture and balance, eliminating reliance on the upper extremities to maintain stability, 
delaying the effects of muscle fatigue, and improving consistency of clinical performance over 
individuals with various body sizes. This presentation will summarize ongoing research in a 
comprehensive program to re-establish or improve personal mobility (standing, stepping, seated 
posture and balance, and manual wheelchair propulsion) after paralysis by spinal cord injury, stroke or 
multiple sclerosis, and more recent efforts to provide natural sensation to lower limb amputees via 
implanted neural stimulation technologies. 

References 
[1] Triolo RJ, Bailey S, Miller M, Rohde L, Anderson J, Davis J, Abbas J, Diponio L, Forrest G, Gater D, Yang L, 

Longitudinal performance of a surgically implanted neuroprosthesis for lower extremity exercise, standing, 
and transfers after SCI. Arch Phys Med & Rehab. 93(5):896-904, 2012.  

[2] Audu M, Lombardo L, Schnellenberger J, Foglyano K, Miller M, Triolo R, A neuroprosthesis for control of 
seated balance after spinal cord injury, Jou NeuroEngr & Rehab 15, 12-8, 2015. 
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K05 

Translating Brain-Computer Interfaces to End-Users 
José del R. Millán, PhD 

 
Defitech Foundation Chair at the Center for Neuroprosthetics, EPF Lausanne 

Short Biography 
Dr. José del R. Millán currently holds the Defitech Foundation Chair at the 
Center for Neuroprosthetics of the École Polytechnique Fédérale de 
Lausanne (EPFL). 
Dr. Millán has made several seminal contributions to the field of brain-
computer interfaces (BCI), especially based on electroencephalogram (EEG) 
signals. Most of his achievements revolve around the design of brain-
controlled robots. He puts a strong emphasis on the use of statistical 
machine learning techniques so as to achieve a seamless coupling between 
the user and the brain-controlled device. During the last years he is 
prioritizing the translation of BCI to end-users with motor disabilities. 

Abstract 
Over the last years, we have developed a variety of brain-computer interfaces (BCI), mainly based on 
the analysis of scalp electroencephalogram (EEG) signals, which have been extensively tested by 
users with motor disabilities after a short training period. A substantial number of tests have been 
carried out at end-users’ home and clinics, outside well-controlled laboratory conditions. Equally 
significantly, non-BCI experts (assistive technology professionals and therapists) have run many of 
these tests independently or with a minimum of remote assistance from researchers. 
A central concern in our research is how to facilitate the operation of brain-controlled devices over long 
periods of time. This is a challenging problem due to the limited (and variable) information carried by 
brain signals we can measure, no matter the recording modality. I will argue that efficient brain-
computer interaction, as the execution of voluntary movements, requires the integration of several 
parts of the central nervous system and the external actuators. In this talk I will summarize this work 
and the main lessons learned from this major effort, highlighting new principles incorporated in the 
brain-controlled devices. In particular, our approach is based on spontaneous and voluntary 
modulation of EEG rhythmic brain activity that does not require any kind of external stimulation, thus 
reducing users’ fatigue. Our BCIs analyze EEG signals to determine users’ intents through the use of 
a probabilistic classifier with evidence accumulation. Our BCI approach incorporates some additional 
principles —in particular, shared control— so as to increase reliability, reduce workload, and facilitate 
split attention. 

References 
[1] Leeb, R., Tonin, L., Rohm, M., Desideri, L., Carlson, T., and Millán, J.d.R. (2015). Towards independence: A 

BCI telepresence robot for people with severe motor disabilities. Proceedings of the IEEE, 103(6):969–982. 

[2] Perdikis, S., Leeb, R., Williamson, J., Ramsey, A., Tavella, M., Desideri, L., Hoogerwerf, E.-J., Al-Khodairy, 
A., Murray-Smith, R., and Millán, J.d.R. (2014). Clinical evaluation of BrainTree, a motor imagery hybrid BCI 
speller. Journal of Neural Engineering, 11(3):036003. 
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K06 

Advancing Wheeled Mobility and Function for People with 
Disabilities 

Rory A. Cooper, PhD  

Distinguished Professor and FISA Foundation – Paralyzed Veterans of America Chair 
Founding Director, Human Engineering Research Laboratories 

U.S. Department of Veterans Affairs 

Short Biography 
Dr. Cooper has authored or co-authored over 300 peer-reviewed journal 
publications, and has over 20 patents awarded or pending. Cooper 
authored: "Rehabilitation Engineering Applied to Mobility and Manipulation” 
and “Wheelchair Selection and Configuration”. He was a bronze medalist in 
the Paralympic Games, Seoul, Korea. Cooper was awarded the International 
Paralympic Scientific Achievement Award. PN Magazine included Cooper as 
one of the people who have transformed the lives of people with SCI. Dr. 
Cooper’s work has received coverage by TIME*, CNN, Popular Science, 
Forbes, ESPN, NBC, BMJ, Reuters, NPR, and other national and 
international media outlets. 

Abstract 
Advances in robotics and intelligent machines are making breakthroughs in the lives of people with 
disabilities. As computing power, sensors, the internet of things are brought to bear on improving the 
lives of people with disabilities, there should be tremendous opportunity for social inclusion and full 
participation. Robotic technologies are improving mobility and function for people with severe 
disabilities affording greater independence. Wheelchair mounted robotic arms provide the ability to 
perform activities of daily living with less assistance. Robotic transfer devices expand the 
environments where people can visit and stay for extended periods and are reducing the strain on 
caregivers. Robotics in wheeled mobility is transforming powered wheelchairs to provide independent 
mobility to more people in a wider variety of environments. 
Intelligent systems are transforming assistive technologies as well as our environments. Virtual 
coaches are changing the way people use their powered seat functions to improve compliance with 
clinical guidelines. Smart environments improve quality of life in our homes, schools, work places and 
communities.  

References 
[1] Grindle, G.G., Wang, H., Jeannis, H., Teodorski, E., Cooper, R.A. (2015) Design and User Evaluation of an 

Electrical Powered Wheelchair Mounted Robotic Assisted Transfer Device, BioMed Research International, 
2015(ID:198476): 9 pages. 

[2] Daveler, B., Salatin, B., Grindle, G.G., Candiotti, J., Wang, H.W., Cooper, R.A. (2015) Design of a Mobility 
Enhancement Robotic Wheelchair. Journal of Rehabilitation Research and Development, 52(6): 739-750. 

 

* http://time.com/3975280/robotics-disabled/  
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T01 

VUB-CYBERLEGs Transfemoral Prosthesis 
Louis Flynn1*, Joost Geeroms1, Tom Van Der Hoeven1, Rene Jimenez-Fabian1, Bram 

Vanderborght1, Dirk Lefeber1 

1 Vrije Universiteit Brussel, Mechanical Engineering, B-2650 Brussels, Belgium 

Abstract 
The CYBERLEGs Beta-Prosthesis is a highly compliant, transfemoral prosthesis that attempts to 
match the quasi-static stiffness of the knee and ankle using passive components when possible. With 
integration of these passive components with series-elastic actuators, the prosthesis can provide the 
full knee and ankle torque during the normal gait cycle with minimal active driving of the motors. The 
ankle is a series elastic actuator incorporating an MACCEPA architecture with a parallel spring to 
reduce required peak motor torques. There is a weight acceptance (WA) mechanism to efficiently 
handle stance flex in the knee by inserting a stiff spring at the time of heel strike, unlocking when 
necessary for the swing phase.  The CYBERLEGs Beta-Prosthesis is a test bench to learn about 
controlling highly compliant robots designed for human interaction.   

The prosthesis has been used with four male amputee test subjects, with ages ranging from 48 – 
72 years, for walking, stair climbing, and sit-to-stand operations.  During treadmill walking, there were 
subjects who increased their preferred gait speed by 0.2 km/hr, implying some benefit from the active 
system.  Also, while the prosthesis weight was around 5 kg, the subjects reported that the prosthesis 
did not feel so heavy when it was running correctly. The subjects walked with a speed which was far 
below the target, resulting in lower than expected pushoff torques.  Also the subjects did not utilize the 
WA mechanism as designed.  It is believed that this was mostly due to training, and with longer 
training periods it is believed this can be changed. 

In order to further develop this system a new electronics system, based on EtherCat and Simulink, 
has been developed as well as a new control system that does not rely on the more complicated 
Wearable Sensory Apparatus of the CYBERLEGs project.  Refining this new system is ongoing. 
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Abstract 
Body-powered and myoelectric prosthetic terminal devices have similarly high rates of rejection: 26 
and 23%, respectively [1]. This is in part because, despite technological advances, each comes with 
distinct advantages and disadvantages. Body-powered devices typically feel more secure on the body 
because of the harness worn on the contralateral shoulder, while, depending on the physiology of the 
wearer, potentially allowing a more comfortable and secure socket. Inherent to body-powered 
actuation is a certain amount of feedback as one senses the shoulder movement with proprioception; 
however, the force the shoulder must repeatedly exert can also be a source of fatigue and, over time, 
even overuse injuries. Myoelectric prostheses, in contrast, are actuated by motors, avoiding some of 
these fatigue or overuse issues. Further, most myoelectric devices are anthropomorphic in nature and 
thus have improved cosmesis compared to their body-powered counterparts (often hooks). However, 
myoelectric control is not accessible or preferable for all prosthesis users either because of the length 
of the residual limb, difficulty in reliably controlling residual muscles, or simply user preference. The 
SoftHand Pro-H marries the concepts behind traditional body-powered and myoelectric prostheses by 
translating shoulder motion into motor commands. The terminal device is the SoftHand Pro: a 19 
degree of freedom, underactuated prosthetic hand based on the neuroscientific principle of motor 
synergies that is thus able to grasp a wide variety of objects with human-like motion. While the typical 
SoftHand Pro uses myoelectric control, the SoftHand Pro-H employs a typical body-powered harness 
to transmit user intention to the hand’s microcontroller. As with these devices, the SoftHand Pro-H can 
be used as a voluntary-open or voluntary-close hand wherein either open or close motion, 
respectively, is driven by movement of the shoulder and the opposing motion occurs with relaxation. 
Here we present the device, first trials with a prosthesis user, and plans for future work. 
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Abstract 
Exoskeletons that are designed for people with a Spinal Cord Injury (SCI) generally rely on crutches 
for balance maintenance.  Our goal is to enable these subjects to maintain balance in an exoskeleton 
without additional supporting devices, by designing proper balance controllers. Therefore, as a first 
step, we tested and compared various balance controllers on a powered Ankle-Foot Orthosis (pAFO) 
acting in the sagittal plane to assist subjects with a SCI with balancing. 

Two SCI subjects affected by an incomplete low lesion participated in experiments in which they 
had to maintain their standing balance, without stepping, while receiving perturbations on the pelvis 
from a robotic pushing device. We tested different controllers on the pAFO: a fixed stiffness around 
the ankle; a PD-controller on the Center of Mass (CoM) that controls the CoM to a reference location; 
and a Momentum-Based Controller (MBC) that tries to find joint torques such that a certain desired 
centroidal momentum is obtained [1]. The first controller operates in joint space and the latter two in 
CoM space. Using force plates, the torque generated by the subject was estimated and compared to 
the torque delivered by the pAFO, to evaluate the supportive effect of the pAFO. 

We found that the PD-controller on the CoM, and to lesser extent the MBC, provided a substantial 
assistive torque to the subjects after a perturbation had been applied. The ankle torque of the subjects 
decreased without worsening the balancing performance. In contrast, when a fixed ankle stiffness was 
implemented on the pAFO, the subjects needed to provide most of the necessary torques for 
balancing themselves, which shows the added value of controlling in CoM space compared to joint 
space. In future work, we will extend the CoM space controllers to a wearable exoskeleton with more 
actuated degrees of freedom. 
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Abstract 
Wearable robotics is an area of research that has gained substantial attention in recent times.  
Interestingly, the acceptance of these eloquent devices into everyday clinical practice and home use is 
limited by past and present research. 1 Currently, there exists a void between the research evidence 
from engineering groups and clinical teams on the predicated utility and actual usability of wearable 
robotic systems.2 This research summary will highlight some of the research studies being conducted 
at the RIC, where engineering and clinical science is combined, performed simultaneously and 
sequentially to gain insight to clinical utility of wearable robots to specific clinical populations. Results 
of these studies indicate the continued need for adaptations in the hardware and controller 
mechanisms of these devices when used on disabled individuals who struggle with differential muscle 
weakness, range of motion limitations, cognitive disabilities, variable balance and altered neuromotor 
control. Specifically, the larger rigid robots with variable assistance modes provide better mobility 
options in individuals with severe neurological impairments compared to traditional therapeutic 
strategies. Single-joint or modular robots are able to provide the ability for individuals with neurological 
impairments to perform at higher metabolic capabilities, thus improving their ability to perform different 
activities of daily living which require more effort and endurance. However, there seems a need for 
specific training strategies and clinical guidelines when training individuals with varying disabilities to 
use these devices as therapy or personal mobility devices. This information will help clinicians and 
scientists gain some additional insight into how this wearable technologies can be progressed further 
into the field of rehabilitation for every day home and community use. 
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Abstract 
Function Electrical Stimulation during cycling (FES-cycling) was recommended in a variety of aspects 
to improve the general paraplegic condition and to prevent deterioration secondary the Spinal Cord 
Injury (SCI). However, not all the people with paraplegia respond to electrical stimulation. In order to 
explore the characteristics of the concerned public and get insights to find candidates to compete in 
the FES Bike Race, we investigate clinical features from people with paraplegia, assessing their 
responsiveness to neuromuscular electrical stimulation (NMES) and the number of sessions 
necessary to get a primary response. Fourteen volunteers attended a public recruitment forum to be 
assessed about their responsiveness. No elective criterion was considered, since we wanted to 
explore the responsiveness to electrical stimulation from people of all backgrounds interested in 
attending FES-Cycling. The participants were enrolled in a 16-sessions protocol starting with a knee 
extension program via surface NMES applied on quadriceps muscle and progressing to other muscle 
groups as the responsiveness was positively visualized by means of contractions strength classified 
as grade 3/5 (movement possible against gravity). After the 16-sessions, volunteers were separated in 
two groups (responsive and non-responsive to NMES) which were investigated in the light of some 
personal, clinical, structural and functional features. Fifty seven percent of the initial sample responded 
to electrical stimulation with a visual contraction. This responsive group was predominantly composed 
by subjects presenting traumatic spinal cord injuries above T12 vertebral level. Only two subjects 
became responsive at the 3rd and 16th sessions. Among the observed features, the etiology and level 
of injuries seems to be more associated to responsiveness. Our observations seem to indicate that 
subjects with traumatic spinal cord injury above T12 level were the best potential candidates for FES-
cycling. Our outlook is to propose a list of minimum requirements and the best user-driven design to 
find candidates suitable for FES bike race competition. 
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Abstract 
Various mental tasks can be used to control a brain-computer interface (BCI), but not every task or 
combination is suitable for every user, which makes it necessary to find the individual one for each 
user. 
We recorded the electroencephalogram (EEG) of five healthy people and one end user using 32 
active electrodes equidistantly spread over frontal and sensorimotor areas. Guided by the Graz-BCI 
paradigm, each participant performed 7 different mental tasks [1] and a rest class. For each possible 
mental task combination a 5x5 fold cross validation was computed to estimate classification 
accuracies: (i) Six separate common spatial pattern filters were trained on EEG data of second 4 to 
second 7 after the visual cue in a one vs. one class manner. (ii) We applied the first and the last two 
CSP projections and calculated 24 logarithmic bandpower features. (iii) A multiclass analytical 
shrinkage regularized linear discriminant analysis was trained using features located 2.5, 3.5 and 4.5 
seconds after the visual cue. (iv) Filter and classification models were applied to the test data for 
performance evaluation. 

 
Table 1: Best individual four task combination for six volunteers. Significanzlevel [2] was 30,5%. 

participants best task combination mean acc [%] 
S1 feet mental subtraction spatial navigation auditory imagery 47,58 
S2 hand mental subtraction spatial navigation auditory imagery 47,86 
S3 feet hand mental rotation auditory imagery 69,77 
S4 feet word association mental rotation rest 37,18 
S5 feet hand mental rotation rest 50,32 

End user 1 feet hand mental subtraction rest 65,79 
 
We successfully determined the most performant mental task combinations of six volunteers. Best 
combinations included at least one motor imagery and for four users also a brain teaser task (mental 
subtraction and word association as defined in Friedrich et al.). This work supports the findings of [1], 
namely that BCI performance can be improved by determining user-specific mental tasks. 
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Abstract 
Assistive technology (AT) is reshaping the delivery of care and rehabilitation for older people as well 
as people with physical and/or cognitive disability. With the ageing of the global population and the 
erosion of the caregiver-patient ratio, the deployment of pervasive ATs designed to support 
independent living, rehabilitation, and interaction with the social environment opens the prospects of 
improving the quality of care, reducing caregiver burden, and empowering the elderly and disabled 
population [1]. However, the potential benefits of pervasive ATs risk to be tampered if ethical and 
psycho-social issues remain unaddressed2. Currently, the adoption of ATs among many population 
segments –e.g. dementia patients and older adults with disability- is still reportedly low as a 
consequence of an information gap in the cross-section of technology and healthcare [2,3]. Ethical 
research on assistive technology has largely focused on post-development evaluation of existing tools, 
with little engagement in the proactive incorporation of ethical factors early in the design of new ATs.  
In this paper, we propose a collaborative ethical framework for the proactive integration of ethical 
factors into the design of future ATs. This framework articulates six main families of factors: (i) 
autonomy/independence, (ii) relationality, (iii) adaptiveness, (iv) usability, (v) privacy, and (vi) fair 
access. While designed to comprehensively encompass the entire AT spectrum, specific adaptations 
are proposed for each main AT type. These are illustrated through six major technological families: (i) 
powered mobility tools, (ii) exoskeletons, (iii) wearables, (iv) rehabilitation devices, (v) personal 
robotics and (vi) brain-computer interfaces. This framework aims at favoring interdisciplinary 
collaboration at the level of AT design, favoring translational healthcare technology, and helping 
maximize the social benefits of pervasive AT while preventing unintended consequences.  

References  
[1] Pollack ME. Intelligent Assistive technology: The present and the future. In: Conati C, McCoy K, Paliouras G, 

eds. User Modeling 2007, Proceedings. Vol 45112007:5-6. 

[2] Bharucha AJ, Anand V, Forlizzi J, et al. Intelligent Assistive Technology Applications to Dementia Care: 
Current Capabilities, Limitations, and Future Challenges. American Journal of Geriatric Psychiatry. Feb 
2009;17(2):88-104. 

[3] Hendy J, Barlow J. Adoption in practice: The relationship between managerial interpretations of evidence and 
the adoption of a healthcare innovation. Health Policy and Technology. 2013;2(4):216-221. 

Short Biography 
Marcello Ienca, (MSc,/MA), studied Philosophy and Cognitive Science at the Humboldt University of 
Berlin and Biomedical Ethics at KU Leuven. He is currently a PhD candidate at the Institute of 
Biomedical Ethics, University of Basel and the Student/PostDoc Representative of the International 
Neuroethics Society (INS). His interdisciplinary PhD project (in collaboration with the geriatrics unit at 
Basel University Hospital) focuses on incorporating proactive ethical considerations into the design of 
assistive technologies. In 2015 he was awarded the Prize A.P. de Carvalho for Social Responsibility in 
Neuroscience from the University of Coimbra and the Sonia Lupien Award from the IRCM (Canada). 
  



 Cybathlon Symposium, Kloten, Switzerland, October 6, 2016 25 

T08 

Powered Wheelchair for Cybathlon, RT-Mover Personal 
Mobility Type WA 

Shuro Nakajima* 

Faculty of Systems Engineering, Wakayama University, Japan 

Abstract 
We developed some personal mobility vehicles in the RT-
Mover series [1], [2]. Their concept centers on efficient wheel 
transport over paved surfaces and other gentle terrain, but 
also envisions a need to negotiate rough terrain. That is why 
there are two major mechanisms for their movement: a wheel 
mechanism and a leg mechanism. Better energy efficiency 
and higher speed capability than crawler or leg mechanisms 
are the strength of the wheel mechanism, and high mobility 
performance on rough terrain is the strength of leg 
mechanism. The concept of the gait algorithm is the 
following: “RT-Mover Gait Algorithm” = “Wheel mode, 
normally” + “Leg motion, if necessary”. 
Previously proposed RT-Movers face difficulty in completing 
tasks of Cybathlon. The problem is that there is no capability for climbing up and down three-step 
stairs. The reason for this is that the body tilts at maximum almost 40 degrees when climbing stairs. In 
addition to that, there is no space to adjust supporting wheels in order to provide sufficient static 
stability. Previous research outcomes cannot deal with this situation [2]. Another problem is that it is 
difficult to reach a table and a door. The reason is that wheel and body parts of the device interfere 
with that motion, because a pilot's seat is located at the center of the device. 
We have developed a brand-new machine for Cybathlon, named RT-Mover PType WA. Major 
mechanical improvements compared with previous models are as follows. The slider to move the seat 
forward/backward is added in order to expand the movable area of the seat, and the mechanism, body 
length, width, gear ratio and so on are modified for tasks.  
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Abstract 
In the past decade, several powered ankle-foot prostheses were developed by various research 
groups. They were designed to improve sagittal plane mobility by focusing on control of the ankle in 
one degree of freedom (DOF); that is, each seeks to regulate plantarflexion and dorsiflexion of the 
robotic ankle. Activities of daily living however, include gait scenarios that require agility and 
maneuverability, such as turning, traversing slopes, and adapting to uneven terrain profiles. These 
activities require ankle action in both the frontal and sagittal planes [1]. The authors developed a 2-
DOF cable-driven powered prosthesis with controllable Dorsiflexion-Plantarflexion (DP) and Inversion-
Eversion (IE) (Figure 1) [2]. This prototype uses Bowden cables allowing the placement of the motors 
and gearboxes away from the distal parts of the limb and near the center of gravity of the user, 
reducing the metabolic cost. In addition, they allow for flexibility on the customization of the prosthesis, 
especially when long residual limb would limit the amount of space available for the active 
components. The proposed design offers versatility to the users by allowing them to switch between 
powered and non-powered states by physically disconnecting the actuation (DC motors, Bowden 
cables, and battery) from the prosthesis. Therefore, the device can be used as a passive or active 
device based on their daily activity. The results of the preliminary evaluations show that the prosthesis 
can closely follow the recorded human ankle trajectories, as shown in Figure 2 [2].    
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Abstract  
Amputees in some developing countries, mainly caused by anti-personnel mines, eagerly demand a 
low-cost but highly-effective prosthesis to improve the quality of life. Current widely-available 
prosthesis, the solid ankle cushion heel (SACH) foot, is very simple with a solid ankle that allows little 
movement of the foot. We proposed a novel ankle-foot coupling called the Multi-Axis Rubber Coupling 
(MARC) to add an ankle joint function to the traditional SACH foot. The MARC is composed of a ball 
joint and a rubber cushion in order to facilitate multi-axial movements necessary for walking. The 
MARC is simple, i.e., composed of only two parts and easy to manufacture locally because the 
materials are locally available and able to be processed. Thus, it is inexpensive and suitable for 
developing countries. Based on preliminary experiments, we designed the cushion with optimal holes 
to control multi-axial elastic properties during walking. Since the rubber cushion stores and releases 
walking energy properly, the SACH foot can stand on ground more stably. We evaluated a basic 
MARC prototype using motion analysis of walking on the flat ground. The ankle joint angle and the 
ground reaction force were measured among three conditions; barefoot walking, the gait produced by 
the SACH foot alone, and the gate produced by the SACH foot with the MARC. The MARC using as 
an adaptor for SACH foot closely replicated the inversion-eversion and planter flexion-dorsiflexion 
movements of barefoot walking. The result of the ground reaction force demonstrated that the MARC 
absorbs impacts on heel contact and maximum moment of the z-axis in the stance phase is the same 
degree as barefoot walking. To sum up, optimal holes in the rubber cushion of the MARC can control 
the multi-axial ankle joint movements with the SACH foot, and thus contributes to stable walking with 
high efficiency.  
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Abstract 
Under normal conditions, sensorimotor control is based on multiple intertwined feedback loops 
between the upper and lower extremities on the one end, and the central nervous system on the other 
end. With an amputation, this feedback loop is suddenly interrupted, and many movements can only 
be executed in a feed-forward mode.  
In order to restore this feedback loop at least partially, we have combined vibration feedback on the 
remaining stump with a re-routing of the corresponding sensory nerves. With this approach, we have 
demonstrated for the first time the feasibility of a sensory feedback device for lower extremity 
prostheses that is based on the principle of targeted sensory re-innervation. The device has been 
accepted very well by the patient, and has led to a significant increase in his quality of life. The surgery 
has successfully eliminated the pain caused by the neuroma, and no incidents of pain were elicited by 
the re-innervation of the dermatome. The observed association of the re-innervated skin areas with 
the locations on the foot innervated by the activated cutaneous foot nerve has remained somewhat 
behind our expectations, and was at the time of writing still incomplete.  
Our findings confirm the results by other groups [1], that the availability of sensory feedback can have 
a positive effect on gait dynamics, and that it is very well received by the patients. Once the subject 
perceives the vibrations reproducibly as stimulation of the corresponding part of the foot, we plan to 
conduct more extensive gait analyses to quantify the effect of this sensory feedback on postural 
stability and gait dynamics. 
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Abstract 
Human locomotion is a complex activity that requires precise coordination between the internal and 
external forces acting on the legs [1]. An increased understanding of how the neuromechanical 
properties of the knee (e.g. the impedance) are modulated to regulate these forces may lead to lower-
limb prosthesis and orthosis designs and control strategies with enhanced comfort, safety, and 
energetic efficiency under both undisturbed and disturbed conditions.  
Perturbation-based system identification is an experimental technique for identifying such properties, 
but requires the development of highly specialized tools. The ETH Knee Perturbator is a novel 
wearable actuated exoskeleton that can apply position perturbations to the knee during gait, with 
minimal effects on baseline gait patterns [2]. When coupled with measurements of interaction torque, 
muscle activity, and multi-joint kinematics, such a device can be used to compute the joint’s 
mechanical impedance throughout the gait cycle and during different walking conditions. 
Bench-top tests indicate that the device is capable of identifying a passive second-order system. Pilot 
tests on human subjects indicate that the ETH Knee Perturbator can apply well-timed and 
reproducible position perturbations at different points during the stance and swing phases of gait. A 
method is proposed for using the device to compute the intrinsic and passive components of 
impedance during gait. 
With this new tool, we aim to improve existing models of locomotor control. This information can 
inform the development of the next generation of prosthetic and orthotic devices, and lead to new 
paradigms for the diagnosis and rehabilitation of gait impairments.  

References 
[1] Zajac, F.E., Neptune, R.R. and Kautz, S.A. (2002). Biomechanics and muscle coordination of human 

walking Part I: Introduction to concepts, power transfer, dynamics, and simulations. Gait and Posture, 16(3): 
215-232. 

[2] Tucker, M.R., Moser, A., Lambercy, O., Sulzer, J.S. and Gassert, R. (2013). Design of a Wearable 
Perturbator for Human Knee Impedance Estimation during Gait. 

Short Biography 
Michael R. Tucker received the B.Sc. and M.Sc. degrees in mechanical engineering from Clarkson 
University in Potsdam, New York and the Ph.D. in mechanical engineering and robotics from ETH 
Zurich, Zurich, Switzerland. 
His research interests include the design and control of wearable robotic systems, robot-assisted 
rehabilitation, physical human-robot interaction, dynamic system modeling, and zymurgy. 
  



 Cybathlon Symposium, Kloten, Switzerland, October 6, 2016 32 

L05 

Towards Seamless Integration of Active Assistive Devices into 
the User's Body Schema 

Janis Wojtusch1*, Philipp Beckerle2, Tim Schürmann3, Marie Schumacher1, Oliver Christ5, 
Andre Seyfarth4, Stephan Rinderknecht2, Joachim Vogt3, Oskar von Stryk1 

1 Simulation, Systems Optimization and Robotics Group, TU Darmstadt, Germany 
2 Institute for Mechatronic Systems in Mechanical Engineering, TU Darmstadt, Germany 

3 Work and Engineering Psychology, TU Darmstadt, Germany 
4 Locomotion Laboratory, TU Darmstadt, Germany, www.prothetik.tu-darmstadt.de 

5 Institute Humans in Complex Systems, FHNW, Switzerland 

Abstract 
Active assistive devices for lower limbs like prostheses or ortheses support the user by providing 
additional torque to restore and improve locomotion abilities. In order to ultimately achieve their 
seamless integration into the user’s experience of everyday routine locomotion, they must provide a 
customized, familiar and predictable behavior that autonomously supports versatile locomotions, 
which describes formidable challenges for research and development. Moreover from a psychological 
perspective, the user might regard the device as part of his or her own body, which would mean a 
successful integration into the body schema. We suggest an integrated investigation of related 
research questions from psychology, biomechanics, and engineering from the beginning of any 
development of active assistive devices. Several experimental platforms have been developed by an 
interdisciplinary group of researchers. They serve as novel research methodologies towards seamless 
integration of active assistive devices into the user's body schema. One of the objectives is to 
investigate how humans incorporate visual, tactile and proprioceptive perception and how to utilize this 
knowledge in engineering design. The Int2Bot platform is a robot testbed with the shape of a human 
leg that mimics squatting movements of subjects in order to investigate rubber hand illusion paradigm 
transferred to lower limbs. Another setup uses a head-mounted display and a treadmill to give 
subjects the experience of walking through a virtual park. Measures like proprioceptive drift, feeling of 
presence and agency, body ownership, and location are assessed. Both platforms contribute to a 
novel prosthesis-user-in-the-loop concept for a holistic, mechanical and perceptive simulation of 
human gait with different prosthetic concepts. It aims at a user-centered design of assistive devices by 
utilizing user experience and assessment. First results indicate that optimized variable stiffness 
actuation and specific visual and auditory stimuli improve the user’s experience. 
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Abstract 
A novel solution to compensate hand grasping abilities is proposed for chronic stroke patients.  The 
goal is to provide the patients with a wearable robotic extra-finger that can be used as grasp 
compensatory tool for hemiparetic upper limbs to compensate for grasping in many Activities of Daily 
Living (ADL).  The robotic device and the paretic limb act like the two parts of a gripper, cooperatively 
holding an object. The device is intrinsically-compliant, modular, underactuated and cable driven. It 
can be wrapped as bracelet to reduce the encumbrance when not being used. The motion of the 
robotic device can be controlled by using the eCap, an Electromyography (EMG) interface embedded 
in a cap. The user can control the device through contracting the frontalis muscle by moving his or her 
eyebrows upwards. The light weight and the complete wireless connection with the EMG interface 
guarantee a high portability and wearability. The performance characteristics of the device is 
measured through experimental set up and the shape adaptability was confirmed by grasping various 
objects with different shapes.  We tested the device through qualitative experiments based on ADL 
involving six chronic stroke patients. The prototype successfully enabled the patients to complete 
various bi-manual tasks. After the experiments, we asked the patients about their satisfaction and 
possible concern related to the proposed grasp compensatory robotic device. Results show that 
proposed robotic device improves the autonomy of patients in ADL and allow them to complete tasks 
which were previously impossible to perform. Currently we are investigating the possibilities to 
introduce the device early in rehabilitation phase for the patients who are seeking for the 
improvements in their skills. 
 
The readers are encouraged to watch the video, here. http://tinyurl.com/hsxd58m 
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Abstract 
The loss of an upper limb strongly affects capabilities and quality of life of a person. Dexterous robotic 
hand prostheses controlled by surface electromyography (sEMG) can significantly improve the 
condition of hand amputees. However, despite the excellent mechanical capability of the devices and 
a usually long training period, their control is currently limited and often not sufficiently natural. 
Remarkable improvements in myoelectric prosthetic control were reached applying machine learning 
and pattern recognition techniques. In 2014, the NinaPro project released the biggest publicly 
available database on kinematics and sEMG of hand movements. The aim is to improve the 
myoelectric hand prosthetic control by creating a benchmark database, so worldwide research groups 
can develop, test and compare solutions. The NinaPro database contains data of several repetitions of 
50 different hand movements (including grasps), recorded from 67 intact and 11 transradially 
amputated subjects. The set of movements is based on the existing literature and the acquisition 
protocol is easily reproducible. The activity of the extrinsic hand remnant muscles, the kinematics and 
dynamics of the hand were measured. Several signal features and classification methods were used 
to perform movement classification using the data. The results encourage the use of NinaPro data and 
machine learning methods to increase naturalness and robustness of myoelectric control. 
Nevertheless, the improvement achievable with only sEMG information seems insufficient for reaching 
a fully natural control for all needs in daily life. High classification accuracy was obtained adding 
accelerometer information. This is consistent with recent studies: movement classification can be 
increased using additional sources of information. An increased recognition rate was also observed in 
subjects experiencing vivid phantom limb sensation. The MeganePro project aims at improving the 
control of robotic prosthetic hands via multisensor integration and considering the interplay between 
reaching, phantom hand sensations and eye-hand coordination in upper limb amputees. 
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Abstract 
Force Myography (FMG) has demonstrated a promising alternative to conventional sensing 
techniques to naturally control a robotic upper extremity prostheses. It is based on pressure sensors 
and has the potential to provide the highest accuracy in prediction, stability over time, wearability, 
simplicity in socket embedding, and affordability of cost [1]. Although, applicability of this technique to 
types of amputation and use in a clinical settings has not been widely investigated. 
We present an experimental case study aimed to naturally control a bionic hand with FMG by a 
transradial amputated test subject. The prosthetic configuration simulates a real case scenario, where 
all the pressure sensors and processing capabilities are embedded inside a prosthetic socket. Both 
static position and dynamic motions’ data analysis has been performed, showing that the former does 
not represent the best indicator of prosthesis performances even in a constrained laboratory 
environment. Different techniques to assess the effect of the limb position and improve dynamic 
classification accuracies are investigated: use of inertial measurement units, use of advanced dynamic 
protocols during the training phase, and a socket weight compensation technique. The proposed 
prosthetic configuration used in conjunction of FMG allowed classifying 6 hand grips with an accuracy 
of 82.2% and 75.5% for the static and dynamic case respectively. An extended configuration, 
containing 11 grips, showed an interesting 72.8% accuracy in the static case only. 
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Abstract 
Although during the last decades, the dexterity of active myoelectric-controlled prosthesis has made 
significant progress, there is still no or very limited sensory feedback in the commercial prosthesis. 
Sensory feedback is important for active prosthesis users because it can not only increase grasping 
performance but also introduce an embodiment feeling to the amputee user. There has been some 
research focused on providing non-invasive sensory feedback to amputees because non-invasive 
feedback has higher user acceptance, compared to invasive ones. For non-invasive sensory 
feedback, vibrotactile was widely used for its relative small size, light weight, and low power 
consumption.  
A sensory feedback system were designed, incorporating pressure sensors, wireless communication 
modules, and a non-invasive haptic display. The flexible skin made of TangoBlack was attached to the 
robotic hand. Five miniaturized pressure sensors were embedded in the skin, one on each finger. The 
sensed pressure data were transmitted by custom-designed wireless communication modules to the 
haptic display control module. The sensory feedback was delivered by five pancake-shaped eccentric 
rotating mass (ERM) embedded in the socket. The distribution of ERMs corresponds to the shape of 
the phantom fingers. The vibrational amplitude was proportional to the sensed pressure. This system 
was tested on one amputee with phantom map. The finger identification test and handling fragile 
objects task were conducted. For the first one, the amputee was blind folded and wearing a 
headphone to eliminate visual and audio cues. The experimenter pressed the robotic finger and the 
subject answered which finger he felt being touched. The amputee could answer all the fingers 
correctly for all the trials. Then the subject was asked to grasp eggs and move them to a small basket. 
The amputee could move all the eggs without dropping or breaking any. There were no detectable 
interference between the feedback and EMG sensors. 
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Abstract 
Approximately two-thirds of stroke survivors suffer from 
persistent hand impairment. The inability to use the affected 
hand may limit recovery or even result in a decline due to 
learned non-use. Wearable robotic devices are a promising 
technology to enable the use of the impaired limb in activities of 
daily living, thereby enhancing rehabilitative training after stroke. 
In collaboration with the groups of Prof. Jumpei Arata at Kyushu 
University, Japan, and Prof. Gregory S. Fischer at Worcester 
Polytechnic Institute, USA, a compact and lightweight hand 
exoskeleton with remote actuation has been developed [1]. The 
current prototype is fully wearable (hand weight 115g, total 
weight 867g) and assists flexion and extension of the four 
fingers. It presents a unique compliant 3-layered spring actuation mechanism [2], ensuring safe 
operation and inherent adaptation to the shape of grasped objects. 
In a usability study the potential for assistance and rehabilitation of the hand exoskeleton was 
evaluated and design features that need to be further optimized were identified. 3 chronic stroke 
patients were recruited in collaboration with the University Hospital Zurich. Participants were asked to 
complete subparts of the Action Research Arm Test (ARAT, a standardized clinical assessment for 
grasping function) while wearing the hand exoskeleton. Participants then filled in a questionnaire 
based on the standardized System Usability Scale (SUS) complemented with additional questions of 
interest. 
First positive results from the usability study highlighted that the generated motion is perceived as 
comfortable, the uncovered palmar side of the hand allows for natural somatosensory feedback during 
object manipulation and that passive finger ab/adduction was highly appreciated. Potential for 
improvement lies especially in the thumb module of the exoskeleton (further degrees of freedom 
required), the fixation on the fingers and the maximum output force (currently limited to 5 N per finger). 
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Abstract 
Recent advances in hand prostheses have made significant progress, but have been slowed down by 
awkward user interfaces (e.g., selecting poses on a smartphone), or non-reliable control from noisy 
sensors. The TACT-HAND project, started in 2016, aims at providing hand amputees with improved 
dexterous capabilities. The project bases its development on the i-LIMB Ultra prosthetic hand by 
Touch Bionics. To counter the well-known drawbacks of surface electromyography (sEMG), 
historically the main modality to infer hand movement intent, TACT-HAND proposes to exploit tactile 
sensing as a complementary source of information, in the form of a compact bracelet with 320 sensors 
[1]. Such source has surprisingly been neglected in prosthetics, although it can be exploited to acquire 
movement intent at low cost, low power consumption and simple usability. We present an approach 
treating the control of prosthetics as a regression problem fusing information from the tactile array and 
the sEMG signals. For this purpose, we extend Gaussian mixture regression (GMR) to online 
subspace clustering techniques working with high dimensional data. The approach concords with the 
acknowledged importance of representing and exploiting synergies in artificial hands, and of reducing 
dimensionality jointly in input and output spaces instead of separately. The approach is then extended 
to the tactile array by exploiting recent advances in tensor methods, aiming at extending conventional 
linear algebra to data of higher dimensions for statistical analysis and compression, by processing 
data jointly in spatial and spectral ways, instead of flattening the data in a matrix form. The aim is to 
provide users with more robust and flexible control of their prosthetics, with transparent and user-
friendly online adaptation.  
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Abstract 
The powered prosthetic has been studied and developed over a long time. In those studies, it is not 
easy to detect the intention of the extent of motion such as joint angle, because an electromyogram 
which is commercially used is noisy and varied. To solve this problem, we proposed the muscle bulge 
movement on the forearm skin surface as a new bio-signal for estimating the extent of motion. The 
muscle bulge means the deformation of the skin caused by the muscle contraction. In a previous 
study, we found the muscle bulge movement is feasible to estimate the intended wrist joint angle for 
intact subjects [1]. Thus, in the present paper, we validate the feasibility of our method for an amputee. 
We recorded the muscle bulge movement as the distribution on skin surface using a tactile sensor 
composed of a sponge with 48 distance sensors. As a result, we found following two results from an 
experiment with one amputee with his right forearm amputated below the elbow and three intact 
subjects. First, the distribution of the muscle bulge for the amputee was changed same as for the 
intact subjects, it corresponded to the extent of the intended wrist joint angle. Second, from the result 
of the angle estimation, it is possible to estimate the intended angle for an amputee as for the intact 
subjects. The error between the estimated and measured angle for the amputee was slightly larger 
than that of intact subjects. It is because, for an amputee, measured muscle was contract individually 
in contrast to intact people’s antagonistic muscle. Therefore, we should apply the muscle 
characteristics to our estimation algorithm. Finally, it is feasible to use the distribution of the muscle 
bulge on the forearm skin surface of an upper limb amputee for estimating the intended wrist joint 
angle. 
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Abstract 
Humans rely profoundly on tactile feedback from fingertips to interact with the environment, whereas 
hand prostheses used in clinics provide no tactile feedback to amputees. In this study we demonstrate 
the feasibility to use a tactile display glove that can be worn by a unilateral hand amputee on his/her 
remaining healthy hand to display tactile feedback from a hand prosthesis. The main benefit of this 
device is that users could easily distinguish the feedback for each finger, even without training. The 
claimed advantage is supported by experiments with healthy subjects. Our experiments on five 
healthy subjects showed that displaying tactile information on the back of fingers is feasible and 
intuitive. The displayed information (finger localization and contact force level) can be readily 
recognized even without training. The response time of subjects reduced and demonstrated a learning 
effect during the experiments.   
We expect that this tactile display method works well with unilateral hand amputees. When a hand 
amputee subject manipulates objects with a hand prosthesis, the tactile events are generated actively. 
As a result, the amputee has a prediction of the tactile feedback before it happens. Therefore, an 
actively generated tactile event is probably even easier to recognize than a passive one. This tactile 
feedback approach may lead to the development of effective and affordable tactile display devices that 
provide tactile feedback for individual fingertip of hand prostheses. 
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fingertips for increased grip in transmetacarpal powered hand 

prostheses 
Renato Mio1*, Marlene Bustamante1 

1 Pontificia Universidad Católica del Perú (PUCP), Sección de Ingeniería Mecánica 
Laboratorio de Investigación en Biomecánica y Robótica Aplicada (LIBRA) 

Abstract 
There is a lack of powered prosthetics for transmetacarpal and congenital amputees with partial hand 
loss, mostly because there is little space available for actuators and electronics. Thus, body powered 
prostheses are the common solution for these cases and many open-source designs can be found, 
such as the Raptor Hand prosthesis, which can be used by both transmetacarpal and congenital 
amputees, and flexes the fingers with a tendon mechanism powered by the user’s wrist. Its main 
disadvantage is that grasping requires high forces on the wrist and causes fatigue to the user. This 
issue could be addressed with myoelectric control of powered fingers. State-of-the-art micromotors 
allow us to design for the available volume. 
Another important limitation of active upper limb prosthetics is the size standardization, which results 
in a noticeable difference between the user’s prosthesis and the healthy hand. The need of 
customization of fingers and palm design is achieved with parametric modeling and 3D printing for 
rapid prototyping. A four-bar linkage mechanism for the fingers allows us to modify the length of the 
links or phalanges according to the user specific anthropometric data with no significant impact on grip 
force and speed. 
Additionally, to increase the actual force that the prosthesis can exert on grabbed objects, it is 
essential to take into account its friction coefficient, which depends on the material. Commercial 
powered prosthesis, such as the i-limb and Bebionic, have powerful micromotors with torques 
comparable to the exerted in human hand articulations [1]. However, they lack the compliant texture of 
human skin and fingertips ridges which are significant factors for grasp effectiveness. These ridges 
coefficient of friction is comparable to that of elastomers [2], and in this work they are designed for the 
customizable fingers using a bio-inspired texture based on silicone rubber. 
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[1] J. T. Belter, J. L. Segil, A. M. Dollar y R. F. Weir. (2013). Mechanical design and performance specifications 

of anthropomorphic prosthetic hands: a review. Journal of rehabilitation research and development, 50 (5): 
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Abstract 
Intelligence has been described as the most powerful phenomenon in the universe. Humans leverage 
intelligence as they plan, coordinate, execute, and interpret the movement of their body during 
interactions with the world around them. Sensorimotor components of human intelligence include the 
ability to acquire diverse information via the peripheral nervous system, process that information, and 
use it to perform actions. When a limb is lost through injury or illness, aspects of that natural 
sensorimotor intelligence are diminished. In the case of upper-limb amputation, new prosthetic 
technologies aim to potentially restore a full range of dexterous movements and the resulting 
sensations, thereby replacing lost sensorimotor intelligence. However, as the complexity of new 
prostheses grows, and the information both from the prosthesis and from the user increases in volume 
and diversity, synthesizing information for control and feedback becomes a significant bottleneck to 
restoring upper-limb function [1]. Prosthetic devices need to take an active role in leveraging 
information to support their users. We propose that increased intelligence on the part of prostheses 
will play a crucial role in restoring and someday reaching far past the abilities lost due to amputation. 
With this view in mind, we present a concrete example of how real-time machine learning allows users 
to personalize and improve the control of their upper-limb prostheses. Our experiments with adaptive 
and autonomous control switching methods show statistically significant gains in terms of task 
completion time and switching burden for both amputee and non-amputee participants. We further 
demonstrate how massively parallel prediction-learning algorithms can dramatically expand the 
machine intelligence of an advanced, dexterous prosthetic limb. This work contributes novel 
preliminary evidence that advanced prosthetic devices can and should be thought of as intelligent 
systems, and presents a first roadmap for pursuing strong machine intelligence within prosthetic 
devices. 

References 
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Abstract 
To this day controllability in upper limb myoelectric prostheses presents a challenge to their users. 
Gesture recognition had present an improvement to previous approaches however this control 
scheme only allows the use to perform some discrete gestures, while the exerted forces to manipulate 
objects, are controlled entirely by the prosthesis, limiting the interaction of the user and the dexterity of 
the hand. In the last years independent finger force estimation have gain great interest, in order to 
solve this two issues. In the literate, machine learning algorithms with multiple EMG channels have 
been the most popular approach. Even though, some of these works have shown high correlation 
values, machine learning relay on arbitrary parameters that not exploit physiological information, such 
muscle synergies, muscle force models, etc. Only a few have tried using this information, but their 
success is modest. This work presents a novel approach for finger force estimation, based on the Hill-
type model. We pose that the exerted force at the fingertips of the fingers, are a linear mixture of the 
forces generated by the muscles of the forearm. The training consists of two algorithms; the first finds 
the crosstalk matrix of the activity of the muscles, using the principle of muscle synergies. The second 
finds the parameters of the finger force model, which are the Hill’s model parameters and the mixing 
matrix of the muscle force weights. Ones the training parameters are found, the muscles activities are 
estimated, then the muscles force, and finally the finger force using the mixing matrix. The prediction 
model, presents a high coefficient of determination (!! = 0.85), which is comparable with previous 
works. Even though it still does not exceed the state of the art algorithms, this work shows the 
potential of the posed model in finger force estimation. 
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Abstract 
Prosthetic arm research focuses on "bionic" but not body powered arms. Forensic medicine is a 
demanding environment, also physically, also for non-disabled people, on both large and small metric 
scales (distances, weights, size). The first author (WS) is in a unique position to provide direct 
comparison of a "bionic" myoelectric iLimb Revolution (Touch Bionics) and a customized body 
powered arm (CBPA). The CBPA contains a number of new developments initiated or developed by 
the user (WS) whereas the second author (DE) assembled the prostheses: (1) quick lock steel wrist 
unit developed after WS' specifications in cooperation with a manufacturer specializing in connectors; 
(2) cable mount modified to allow for complex rather than unilateral curved force distribution initiated 
and developed by WS; (3) avoiding nerve compression typical for conventional figure 9 harnesses 
(F9H) with a cast shape modeled shoulder anchor that also decreases extension to open gripper from 
around 12-15 cm (F9H) to around 5 cm, initiated by WS, developed by both authors; (4) suspension 
with usual complications (congestion or friction) on the stump was improved by employing a soft 
double layer with a pinlocked (Ossur Icelock) liner (Ohio Willowwood) and tube gauze (Molnlycke), 
initiated by DE. The iLimb is mounted on an epoxy socket; a lanyard fixed liner (Ohio Willowwood) 
contains magnetic electrodes (Liberating Technologies). Results: side by side comparison with 
wearing these devices for 12-14 hours a day for two weeks under realistic (real) work conditions 
shows that the CBPA provides reliable, comfortable, effective, powerful as well as subtle service with 
minimal maintenance; most notably, grip reliability, grip dosage, grip performance, center of balance, 
component wear down, sweat / temperature independence and skin state are good. This is relevant as 
Swiss disability insurance specifically supports prostheses that enable actual work integration.  
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Abstract 
Conventional control of arm prostheses for above elbow amputees requires the systematic control of 
each joint in turn to attain the desired motion.  The result is an action which is not intuitive to the user.  
We are therefore using a multi-modal approach combining eye movements with muscle signals. In this 
project a robotic arm e.g. for an above-elbow amputee has been designed with 3 degrees of freedom 
(DOF): flexion and extension of the elbow, wrist rotation and shoulder control. Eye movements provide 
a high resolution 3D cursor that can be used to target the end-point of the movement by moving the 
arm towards the case target and executing the movement controlled by MMG commands. The 
initiation of the device’s movement is triggered by the measurement of long-term stable 
mechanomyographic (MMG) signals [4,5] from the muscles in the user’s remaining stump.  In order to 
improve the accuracy of the prosthesis the system utilizes the gaze vector to locate the users intended 
target object within the 3 dimensional space.  To detect the gaze vector position, a wearable, video-
based, eye tracker is utilized, operated at a sampling rate of 100Hz.  Two eye-tracking cameras, 
focused on the user’s eyes record their movements using non-collimated infrared light to create 
corneal reflections.  Gaze vectors are calculated between the pupil center and the reflection to assess 
gaze direction [3].  Movement of the head and remaining stump are monitored using accelerometers 
and gyroscopes providing additional inputs to the control algorithm to compensate for voluntary 
movements. The initiation of movement is provided by MMG signals from the stump, real time 
processing then determines the end location of the arm using continuous gaze vector and head pose 
estimations.  Inverse kinematics are then utilized to provide control inputs for the drive motors.  The 
calculated angles and parameters are fed as inputs to the microprocessor, located within the 
prosthetic arm, to perform motor rotations.  Thereafter, the robotic arm moves towards the desired end 
point.  The project demonstrates that the incorporation of several low-cost technologies can augment 
the use of prosthetic hands for above elbow amputees, providing a more intuitive action.  This multi-
sensor approach enables enhanced user intention decoding and holds a great potential regarding 
embodiment of prosthetics and simplification of human machine interaction.  
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Abstract 
Lower limb exoskeletons are promising solutions for the support and enhancement of mobility among 
the wide variety of people with gait disorders. However, many challenges remain for a widespread use 
of the technology. Devices on the market focus mainly on Spinal Cord Injury (SCI) patients, while the 
population suffering from gait disorders (unable to walk more than 400m) is about 60 times larger 
based on the National Health Interview Survey from 2012 in the United States. Elderly people and 
people suffering from neurological disorders such as post-stroke, multiple sclerosis or myopathy 
constitute large population segments with important gait disorders. Specific exoskeletons for all these 
cases will have to be developed, as the needs are quite different than those of SCI patients. First, 
different levels of residual capacity both physically and neurologically, have to be accounted for. The 
main issue may not be verticalization and mobilization, but balance control and performances 
augmentation (walking speed and endurance). Second, muscle disorders are not necessarily localized 
only at the lower or the upper limbs. The use of external support such as crutches or walkers are thus 
not an option in many cases. The challenge addressed here is to design an assistive exoskeleton 
providing stability (balance control) while improving walking performance. A novel exoskeleton design 
is proposed. It is composed of three motorized degrees of freedom per leg: the knee flexion/extension, 
the hip flexion/extension and the hip abduction/adduction. The device being underactuated compared 
to a human leg (with seven active degrees of freedom), a dynamic balance control strategy has been 
adopted. In order to improve the interaction between the wearer and his exoskeleton the aspects of 
back-drivability of the joint transmissions have also been addressed. 

References 
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Abstract 
Progressive muscle weakness characteristic of Duchenne muscular dystrophy (DMD) results in loss of 
upper extremity active range of motion (AROM) despite residual muscle strength that is insufficient to 
lift the arms against gravity. Passive arm supports attempt to increase upper extremity AROM for 
these individuals but are largely unsuccessful in delivering the independence they seek to provide. 
Admittance control is a robotic control paradigm well suited for use by individuals with DMD as it 
allows for utilization of residual muscle strength to intuitively control the motion of a powerful robot 
without requiring sufficient strength from the user to overcome gravity and the friction and inertia of the 
robot [1]. A preliminary study examined the feasibility of using an admittance control robot to increase 
upper extremity AROM of individuals with DMD to a greater degree than that provided by a 
commercially available passive arm support. The results demonstrate that the admittance control robot 
significantly increased the reachable surface area scores compared to the passive arm support 
(paired-samples t-test, t(5)=3.984, p=0.010, Cohen’s d=1.6). The study also demonstrated the efficacy 
of admittance control to allow for increased independence in the performance of user-identified 
activities of daily living. To allow individuals with DMD access to this technology for real-world use, a 
working prototype of a wheelchair-mountable admittance control arm support was developed by 
affixing a modular admittance control “kit” to a commercially available passive arm support. Ongoing 
work will evaluate the efficacy of this device to increase independence in activities of daily living and 
reduce disuse atrophy and contractures to delay upper extremity functional loss. 
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Abstract 
Natural-quality, independent ambulation is a prerequisite for community use of lower extremity 
exoskeletons by individuals with disabilities. In general, current exoskeletons generate pre-
programmed gait, where the user cannot exercise volitional control necessary to navigate over uneven 
surfaces and avoid obstacles. Using the Cybathlon exoskeleton tasks as a guide, we have developed 
and prototyped an intuitive strategy that allows user-driven control of the exoskeleton’s movement in 
real time, using trajectories produced by the hands.  The concept allows neurally defined ambulation 
trajectories to be expressed through alternative biological articulators.  This novel approach uses 
admittance control to compute each exoskeleton’s foot position from Cartesian forces exerted by the 
user’s hands on trekking poles that are connected to each foot through a multi-axis load cell. The 
algorithm has been evaluated by naïve, non-disabled users who walked a 10 degree of freedom, ½ 
scale biped robot on a treadmill. The results show that the users’ hands produced robot-generated gait 
kinematics that are very similar to human gait kinematics.  This confirms that the hands are capable of 
producing high quality gait that shares the semi-autonomous nature of natural legged walking, with 
similar low cognitive demand.  Haptic feedback of foot trajectory and ground force reactions to the 
hands also provides sensory information that allows the exoskeleton gait to closely resemble 
unimpaired biological gait.  
A human-scale exoskeleton, the Trekker, has been developed to demonstrate this control method with 
pilots.  The prototype has actuators at the hip, knee and ankle, and is capable of ‘flat-footed’ walking.  
Expansion of the admittance control method allows intuitive force patterns made by the hands to 
control squatting and sitting in addition to ambulation.  Force sensors under the device’s project 
ground force reaction to the onboard computer to assist with stabilization of stance and balance.  This 
prototype will be demonstrated at the Symposium. 
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Abstract 
Exo-skeletons have become a relatively common tool to be used by people following spinal cord 
injury. In Nov 2014 a charitable foundation purchased an EKSO® exo-skeleton for use by an NHS SCI 
in-patient rehabilitation unit. Review of existing literature indicated that there was little research 
considering users experiences of exo-skeleton robotic technology [1] and none considering its 
application in acute rehabilitation. The following research question was therefore adopted: What are 
the experiences of patients and clinicians from a Spinal Injuries unit using an EKSO® exo-skeleton 
device as part of an acute rehabilitation programme? 
The study was undertaken in collaboration by Sheffield Teaching Hospitals Foundation Trust and 
Sheffield Hallam University. Ethical approval was granted in September 2015. 
Methodology 
A qualitative approach was undertaken through semi structured interviews. Patient participants were 
approached by the service lead. Staff participants were recruited through posters. Interviews were 
arranged at the participants convenience, were 30-45 minutes long and were recorded for later 
transcription. A completed transcript was shared with the participant for member checking. Data was 
analyzed using thematic analysis. 
Participants 
Patients  -  4  male, aged 27-45, 3 complete SCI, 1 incomplete, 2-18 sessions with the EKSO® 
Clinical  Staff -  4 female, 1 male . 
Results 
Shared themes across both participant groups were identified as education and usability 
Patient specific themes were identified as physical, psychological and financial 
Staff specific themes were engagement, preconceptions, workload and effectiveness  
Conclusion 
Patients and Staff had mixed experiences of the exo-skeleton. Overall the patients were more positive 
and their motivation to support recovery and their perceptions of physical benefits outweighed the 
negative experiences. Staff were more cautious in their acceptance of the new technology but were 
willing to acknowledge its potential. 

References 
[1] Wolff, Jamie ; Parker, Claire ; Borisoff, Jaimie ; Mortenson, W Ben ; Mattie, Johanne (2014). A survey of 

stakeholder perspectives on exoskeleton technology. Journal of Neuroengineering and Rehabilitation, 11 , 
169-0003-11-169.  

Short Biography 
Dr. Jackie Hammerton is the Lead for Physiotherapy Education at Sheffield Hallam University. Her 
clinical specialty is neurology and her research interests following completion of her PhD in 2004 have 
predominantly focused on the use of technology in rehabilitation. Following a number of studies and 
publications on the role of technology in the recovery of the upper limb after stroke an opportunity 
arose to work with STH to investigate their exo-skeleton. The data collection and analysis was 
undertaken by postgraduate Physiotherapy students, supervised by Dr. Hammerton, as part of their 
final dissertation.  
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Abstract 
Exoskeletons (wearable robots) act in series or in 
parallel to a human limb to assist in motion economy by 
augmenting joint torque and work done [1]. An ankle-
foot orthosis (AFO) is a type of exoskeleton that 
surrounds the ankle and foot. AFOs are externally 
applied and intended to control position and motion of 
the ankle, compensate for weakness or correct 
deformities. AFOs could be divided into three groups 
which are passive, active, and hybrid. Since hybrid 
AFOs combine the advantages of passive and active 
AFOs by compliant actuators, they are more 
advantageous than other types of AFOs. The purpose of 
this study is to build a hybrid AFO prototype for 
rehabilitation of the pathologies such as peripheral 
nervous system trauma, incomplete signal cord injuries, 
stroke, multiple sclerosis, muscular dystrophies and 
cerebral palsy, and endurance augmentation. In order to 
achieve this goal, first, appropriate materials such as 
motor, ball screw, spring, coupling, and bearings have 
been compared and selected for the design of the prototype; then a CAD model of the hybrid AFO has 
been designed (Fig.1). Second, an adaptive backstepping control system has been developed to 
accomplish the desired gait cycle. The novelty of the hybrid AFO is related to the control architecture 
which allows the system adapt itself to the variable conditions such as ground reaction force and 
walking speed. An untethered control system relying on lightweight and powerful battery packs and 
also, the design of an embedded control system will be a goal for the future developments. Built 
prototype may also lead to a commercial product. 
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Figure 1: Hybrid Ankle Foot Orthosis 
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Abstract 
In the Symbitron Project [1], one of the main objectives 
is to develop a safe, bio-inspired, and personalized 
wearable exoskeleton that enables individuals with a 
spinal cord injury (SCI) to walk without additional 
assistance, by complementing their remaining motor 
function. The first target group of five subjects, have 
enough hip control to keep themselves upright, but 
need support around the ankle and/or knee joint. The 
figure shows the main features of the newly developed 
exoskeleton. The table below list the preliminary 
specifications.  

Description Value Unit 
 Knee Ankle  
Peak output torque 70 100 Nm 
Peak output speed 120 60 rpm 
Average motor Power 750 W 
Actuation unit mass 1.5 kg 
Mass per leg 5 kg 
Torque resolution  0.012 Nm 

The exoskeleton structure is personalized in the design 
phase using 3D scans of the subjects. The advantage 
of this approach is the high degree of comfort, reduced 
weight, and a compact envelope around the body. The 
modular design of the exoskeleton enables a flexible 
configuration and easy doing on and off the device. This 
technology can greatly improve the usability of future 
exoskeletons. 
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Abstract  
The rigid structures of exoskeletons can impose kinematic constraints leading to undesired effects for 
the user such as movement alteration, faster fatigue and overall discomfort. One source of these 
constraints in exoskeletons and other orthotic devices comes from misalignment between the joint 
axes of the rigid structure and the corresponding axes of the human joints. Misalignment may come 
mainly from inaccurate alignment, slippage during operation, or because an exoskeleton joint does not 
accurately replicate the anatomy of the corresponding human joint. This work introduces a mechanical 
mechanism that is designed to compensate for misalignment constraints and evaluates if this 
mechanism is a suitable approach to ease the constraints.  
Eleven healthy subjects performed hip and knee movements while wearing a lower limb exoskeleton. 
The exoskeleton has an integrated misalignment compensation mechanism at the human-exoskeleton 
interface that can be locked to mimic a system without the compensation [1]. It was equipped with 
position and force sensors that measured the relative motion and forces at the interfaces. We tested 
with different magnitudes of joint misalignment and with the compensation mechanism either locked or 
unlocked. The results showed that the integration of a misalignment compensation mechanism as 
suggested in this work reduces undesired constraints. This effect is stronger for conditions that 
imposed a high constraining force, namely a large misalignment combined with a high range of motion 
in the misaligned joint. We conclude that the integration of a compensation mechanism should rather 
be considered for high ranges of motion, if a high mechanical transparency is required or if an 
accurate joint adjustment is not possible. Then the use of a compensation mechanism can have a 
major impact in the comfort and functionality of exoskeletons. 
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Abstract 
Lower limb exoskeletons have great potential to improve mobility and independence of people 
suffering from muscle weakness. However, current devices are limited in their suitability and 
acceptance among people with muscle deficiencies. These devices are expensive and have bulky 
structures that can restrict natural movements, and thus, leading to user discomfort when worn over a 
long period of time. Soft, textile exoskeletons - exosuits - are fundamentally different from these 
conventional assisting technologies in that; by definition, they lack rigid structures. Therefore, exosuits 
have the potential to reduce some of the disadvantages of rigid exoskeletons, namely kinematic 
constraints and large masses, but they are limited in the amount of assistance they can provide. We 
have developed a first prototype of such a soft, robotic device for the lower limbs: MAXX - Mobility 
Assisting teXtile eXoskeleton. MAXX works in parallel with the user’s muscles to support neural 
control synergies and substitutes for losses of motor function – specifically designed for paraplegics 
that have remaining motor function in the lower limbs. Our exosuit can simultaneously support multiple 
joints with only one actuator per leg. By actively supporting extension of the hip, knee and ankle joint 
during different movements, the multi-articulated exosuit architecture is able to compensate for gravity 
in these joints. Besides the active support, the suit incorporates passive elements which store a 
portion of the energy that is provided during joint extension. The passive elements are incorporated in 
a bio-inspired, antagonistic structure. This particular arrangement increases upright stability and 
allows support of both flexion and extension moments. The use of functional textiles and efficient 
actuators enables the system to transmit high forces. By providing external assistance, we expect that 
the exosuit will not only improve mobility and independence significantly, but also have a positive 
impact on the musculoskeletal system, neuromuscular synergies and immobility related comorbidities. 
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Abstract 
Humans modulate the impedance of their legs for optimal efficiency and stability during gait. However, 
commercially available exoskeletons typically consist of stiff links and stiff actuators, which increases 
the risk of falling and mechanical failure in case of collision with an object. We hypothesize that gait 
assistive devices, such as exoskeletons, should be capable of impedance modulation for improved 
safety, efficiency and ambulation speed. 
The VariLeg exoskeleton was designed to overcome these limitations and restore natural gait for 
paraplegics with complete or incomplete loss of leg motor functions. The system has three degrees of 
freedom per leg in the sagittal plane – two are active (knee and hip) and one is passive (ankle). The 
novelty of this device lies in the actuation of the knee joint through a variable stiffness actuator (VSA), 
which is based on the MACCEPA [1]. 
The VSA is used as a series elastic actuator following position reference trajectories. The gait 
trajectories were adapted from motion capture recordings of unimpaired subjects. They are scalable in 
time and space to adjust the stride time, length or height [2]. In this way, the exoskeleton’s motion can 
be adapted both to the user’s needs and the environment, and can be tuned as the training with the 
device progresses. Such scalable trajectory templates were defined for each activity of the powered 
exoskeleton discipline in the Cybathlon 2016.  
In the future, the VSA will be driven by an impedance controller modulating stiffness according to 
unimpaired human gait data [3] in order to improve stability, e.g., on uneven ground. Pilot studies with 
paraplegics will be performed to systematically investigate the impact of the VSA on gait efficiency and 
stability. These experiments will provide useful insights for the implementation and control of VSAs in 
assistive devices. 
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Abstract 
A spinal cord injury (SCI) disrupts the motor and sensory functions of the nervous system, limiting 
motion capabilities and reducing the quality of life of affected people. An active stance-control knee-
ankle-foot orthosis was developed and tested to aid incomplete SCI subjects by increasing their 
mobility and independence [1]. A further improvement of the orthosis is conducted by the incorporation 
of elastic actuation to utilize advantages of the compliant system regarding efficiency and human-robot 
interaction, as well as the reproduction of the physiological compliance of the knee joint. The optimal 
structure and parameters is determined via optimization using elastic actuator models while 
considering the efficiencies of various components. This leads to the concept of a series elastic 
actuator with a locked actuator position during the first half of the gait cycle by an additional 
mechanism. The series compliance is selected to mimic the physiological stiffness of the knee. During 
the second half of the gait cycle, a desired motion of the knee is realized with an EC-motor, controlled 
by means of impedance control. The locking mechanism avoids operation of the motor in a period of 
the gait cycle, where its efficiency is low due to the respective torque-velocity characteristic. In 
addition, the selection of an optimal gear ratio for the second half of the gait cycle maximizes 
recoverable energy. Simulations of this clutchable series elastic actuator (CSEA) yield a theoretical 
generation of 1.52 J per gait cycle in contrast to a consumption of 6.3 J of the directly-actuated 
system. Control strategy and actuation system are implemented in a test bench, modeling the foot and 
shank as a pendulum. The conducted experiments provide a proof-of-concept while revealing gear 
friction as the main limitation of the system. Future work could improve the prototypic CSEA to 
generate a light and aesthetic design for the implementation at the active knee-ankle-foot orthosis. 
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Abstract 
Lower extremity exoskeletons have become an established technology. The features and pricing of 
these devices are such that they are mostly only suitable for providing gait training in clinical 
rehabilitation.  
In the future, applications of leg exoskeletons are foreseen as assistive device in the all-day living 
environment or as support for workers that perform strenuous tasks. For such applications a number 
of issues have to be resolved for exoskeletons to become a feasible technology. Important issues 
being: cost, range of use (battery life, energy use), size/bulkiness, cooperative control, meaning the 
ability to function efficiently together with a (partially) functional person, and finally safety, mainly in the 
sense of avoiding falls. 
In all current exoskeletons the devices provide or support the essential movements of the stance and 
swing leg that contribute to progression of the body during walking, but they do not provide or support 
the adequate behavior of the legs as is needed to maintain postural stability. This means that such 
exoskeletons when used by patients have to be used in combination with crutches, walkers, or 
overhead supports in cases where the user is not able to maintain postural balance. 
In the BALANCE project control approaches are developed and implemented that support the 
maintenance of postural balance during walking. In this context we developed and implemented a 
‘Stability Index’ (SI), which is an approach to observe the actual state of balance, in the sense of a 
stability margin, or actual risk of falling, based on real time processing of wearable and wireless IMU 
based motion capturing. This SI serves as an input the trigger supportive control actions as well as a 
metric to validate the quality of balance control. Real Time Implementation strategy and initial 
validation of this SI will be presented. 
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Abstract 
Controllers for robotic rehabilitation must be adapted to the functional capabilities of users and 
recognize human-motion intention. Surface electromyography signals (sEMG) are often used as a 
control command signal due it is one of the most important biological signals which directly reflect the 
human-motion intention. sEMG signals from lower limb muscles are recorded as primary actor in 
locomotion, however, the erector spinae muscle (ES) from trunk also can be used to recognize motor 
intention related to lower limb movement [1].  
This work presents the development of a control system for a knee exoskeleton based on velocity 
adjustment and motion intention from ES muscle, which can be used in gait rehabilitation. In order to 
explore trunk muscles to recognize motor activities related to knee motion, a protocol to acquire a 
database was developed. An acquisition equipment (BrainNet BNT 36) is used to get sEMG signals 
from healthy subjects (sampling rate of 400 Hz, band-pass filter from 10 to 100 Hz) of the following 
muscles: rectus femoris, vastus lateralis, biceps femoris, semitendinosus and gastrocnemius, erectus 
spinae at levels C7, T3, T7, T12 and L4. Artificial neural network, linear discriminant analysis, and 
support vector machine (using Gaussian kernel) were used as classifiers. As results, was obtained an 
acceptable accuracy between signals from trunk and lower limb muscles related to the recognition of 
the following motor tasks: knee-flexion/extension, standing/sitting, walking and rest stand/sit. The 
sEMG signals are used as controller input signals. Once the motion intention is recognized, the 
velocity controller adjusts the knee movement according to both: user torque and an adjustable gain 
related to the sensibility of the movement based on a hyperbolic function. Preliminary results in 
passive knee rehabilitation therapy show a good performance of the controller. The assist level of the 
exoskeleton can be adjusted until the user’s motion intention to track a desired trajectory and to stop it 
when the user decides. 
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Abstract 
Most current lower extremity exoskeletons require guidance and assistance of its user to stay upright. 
To realize the opposite, that is, to have an exoskeleton assist its user in maintaining balance in a 
natural way, it is of major importance to gain an understanding of human balance control. Successfully 
transferring such knowledge to an exoskeleton could, for example, make crutches unnecessary for 
paraplegic users. 
We present results of four pelvis perturbation studies in healthy human walking. Such perturbations 
change the movement of the body's center of mass relative to the feet, as might happen following 
unexpected contact with another person or object. We focus on foot placement adjustment in 
response to the perturbations. This is often considered the most important strategy to maintain 
balance during walking [1,2]. Subjects walked on an instrumented treadmill and received unexpected 
anteroposterior and/or mediolateral pelvis perturbations of various force magnitudes, randomly 
delivered as 150 ms pushes using an actuator. Experiments were conducted with subjects walking 
freely, or with one of various constraints. For example, a pair of modified ankle-foot orthoses were 
used as a physical constraint to investigate effects of limited ankle control on balance recovery. 
Kinematic and kinetic data were collected for analysis of the recovery responses. 
In general, for the first recovery step after the perturbation, the center of mass velocity at heel strike 
showed major predictive value for the location towards which the center of pressure will shift at the 
subsequent toe-off. This appears to hold even when the ankle joint is disabled through a physical 
constraint. The results have implications for exoskeleton design and control: depending on the 
perturbation magnitude and direction, not only foot location adjustments, but also modulation of single 
and double support durations, as well as ankle torque modulation have important contributions in 
human-like balance recovery. 
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Abstract 
We evaluated the performance of a bioinspired, neuromuscular controller (NMC), implemented on a 
haptic gait trainer worn by subjects with spinal cord injury (SCI). In particular, we tested if the preferred 
speed ! −  step length !  relationship found in healthy gait, !~!!with ! = 0.54 ± 0.10  [2], could be 
reproduced. The power law represents the economical step length for a given speed. The NMC, 
based on Geyer and Herr [1], produced desired assistive torques based on simulated Hill-type 
muscles activated in reflex loops by joint angle and stance/swing state inputs. We hypothesized that 
the NMC’s virtual dynamics, in conjunction with SCI subjects walking in knee and hip gait trainer 
LOPES on a treadmill, could produce a similar power law. The subjects (N=4, male, 24 to 33 years of 
age, mass !  71.8±12.6 kg, mean±s.d., height !  1.83± 0.02 m, 3 complete at T11, T9, T7, 1 
incomplete at L1)  in NMC-controlled LOPES were able to walk at various speeds (0.6 m/s to 1.4 m/s). 
These speeds are relatively fast considering only one subject (L1) could walk unsupported (at 0.06 
m/s). We determined exponent ! (and offset !) from linear regression of  log ! = log! + β ∙ log ! for 
each subject. Three subjects demonstrated the power law with ! = 0.76 ± 0.06  (mean ± s.d., 
mean !! = 0.84), and the fourth exhibited a more linear trend (! = 1.16, !! = 0.97). Therefore, the 
power law emerged for most of the subjects, albeit with relatively longer step length at faster speeds. 
This could be explained by body weight support (23% ! to 38% !) and use of handrails (33% ! to 
47% !), as the fourth subject had the most vertical support. Ankle actuation was also absent, and the 
NMC was not optimized for subject anthropometry or multiple walking speeds— both to be addressed 
in future work. Nonetheless the power law enables evaluation of controller designs for economical 
gait. 
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Abstract 
Functional Electrical Stimulation cycling has benefits for subjects with Spinal Cord Injury (SCI), 
including improvements in cardiovascular function and muscular atrophy, as well overall motivation 
due to engagement in physical exercise [1]. However, some limitations, e.g. lack of optimal control 
strategies that would delay fatigue, may still prevent this technology from achieving its full potential [2]. 
The current work analyses two stimulation patterns for FES cycling control: square and trapezoidal 
functions. The main control strategy relies on the crankset angle to dictate simulation intensity. 
However, muscle dynamic response implies that applying stimulation in the form of a trapezoid or 
square might result in differences on cycling movement. Three able-bodied subjects cycled the EMA 
trike [3] using both strategies: step and ramp functions. Current intensity was calibrated for each 
subject and they were able to cycle with no volitional effort, as instructed. We analyzed crank angular 
speed in steady state for approximately 30 seconds. Both in ramp and step, subjects were able to 
cycle close to the reference speed in steady state (300º/sec). Data from one subject indicate 
oscillation decreased in steady state on the ramp reference (lower standard deviation), whilst data 
from the other two subjects indicate the opposite. Subjects also reported that ramp references are 
more comfortable compared to the alternative. However, the results were not conclusive, and one 
subject reported difficulties on not making any volitional effort. Therefore, more tests with SCI subjects 
are needed. Also, testing with different speeds will help us better understand the effects of muscle 
dynamics on FES cycling. Although inconclusive, new tests promise to increase performance during 
cycling. 
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Abstract 
Functional Electrical Stimulation (FES) is a technique that uses an electrical current to activate 
muscles that are either weak or paralyzed.  The placement of electrodes directly on to the skin of the 
legs of a person who has suffered a spinal cord injury (SCI) or neurological dysfunction enables the 
muscles to be contracted by electrical stimulation.  This action can be used to develop a pedaling 
motion which has been used as an aid to rehabilitation. 
We are combining two innovations, 1. Closed-loop machine learning optimization to adaptively 
improve the simulation parameters and 2. Novel sensors that enable us to stimulate and record 
muscles at the same time. We are using our closed loop dynamic optimization approach (see Bohte et 
al. [2] for review), deployed in neural engineering settings by Ferrante et al. [3] and Lorentz et al. [4]. 
The FES stimulus parameters are adaptively changed so as to maximize a desired cost function 
(maximal and steady force output) under constraints of muscle stimulation efficiency. Probabilistic 
estimation techniques are used to recursively update our estimate of the cost functions dependence 
on the stimulus parameters. Stimulation at the next pedal cycle is updated to lay on the location of the 
extremum of the cost function. Predicted and measured output are compared and the recursive 
estimator is updated and at the optimization cycle repeated. Muscle stimulation efficiency is tracked 
using simultaneous electrical stimulation with recording of elicited muscle activity. While electrical 
stimulation induces direct artifacts and cross-talk in EMG, we are using our novel MMG sensors, that 
measure mechanical signals of muscle vibrations. This enables us to track muscle contraction 
performance during stimulation. These projects demonstrate the development of a closed loop FES 
system capable of detecting such factors as external disturbances, muscle fatigue or a change in 
intended speed by the user and adjusting stimulation parameters accordingly.  In order to achieve this 
objective, the system must be able to effectively and safely stimulate the user’s muscles, obtain 
feedback relating to muscle force; fatigue and pedal cadence and implement a control algorithm to 
process the inputs and outputs.  Bayesian optimization machine learning technique is used to 
determine how the system should respond to the input factors in real time.  This approach aims to 
respond and compensate controls in a manner similar to the brain. 
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Abstract 
A brain machine interface (BMI) is a system that enables communication and control of devices using 
brain signals. Technological advancements allow current embedded PCs to carry enough 
computational resources to process EEG signals and to develop embedded BMIs. In this work, the 
performance of the Odroid XU4 embedded PC is evaluated as a processing and control device for 
BMI, based on motor imagery (MI) paradigm, to obtain a portable, low cost, and trustworthy device [1]. 
The Odroid XU4 is valued at $74 and has an Octa core processor (2GHz). In comparison, the Linux 
PC used has an Intel Core i7 processor (3.4GHz) and costs around $1500. To analyze the 
effectiveness on each device, a 2-class and 4-class motor imagery datasets were used (BCI 
Competition II-III). The first dataset comprises 280 trials sampled at 128Hz, filtered between 0.5-30Hz, 
C3, C4 and Cz channels. Instead, the 4-class dataset was sampled at 250Hz, filtered between 1-50Hz 
and comprises 60 channels; however, only 20 channels were used. 
For the 2-class MI dataset, a Wavelet Transform (WT) was used as the feature extraction method. The 
resulting feature vector trained two classifiers: Support Vector Machine (SVM) and Multilayer 
Perceptron (MLP). For the 4-class MI dataset, the feature extraction methods used were WT and One-
Versus-Rest Common Spatial Patterns (OVR-CSP). Training was computed using a Multiclass SVM 
classifier [2].  
In the first case, results show that both systems offer the same accuracy (92.8%) on each classifier. 
Nonetheless, the PC(t:0.009s) performs approximately 6 times faster than the Odroid(t:0.06s). For the 
second dataset, WT showed 77% accuracy, while OVR-CSP achieved 89% accuracy. Processing 
times indicate the PC outperforms the embedded system approximately by 5 times using WT 
(PC:0.46s;Odroid:2.25s) and OVR-CSP (PC:0.47s;Odoríd:2.64s). Despite noticeable differences, the 
Odroid system has proven its potential for the development of accessible fully embedded BMIs. 
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Abstract 
Brain-Computer Interfaces (BCIs) have been lauded for their potential to extend external device 
control to everyone regardless of physical disability. The largest hurdle to widespread adoption is the 
difficulty of harnessing and discretizing brain waves to specific commands. The P3001,2 response is 
an event related potential that occurs when the subject reacts to a stimulus. This response has 
traditionally been used by displaying a grid of letters and numbers to a patient while the columns and 
rows flash in sequence. By focusing on a specific target, the user can slowly type out commands when 
the P300 filter identifies their target of interest. However, these P300 speller applications incorporate 
36 discrete targets, and require significant training sessions. This large number of targets also 
increases the time it takes for the program to classify which target is associated with the P300 
response.  
Lowering the number of choices to the six or fewer most commonly requested actions allows training 
and classification times to be significantly reduced. Additionally, using symbols instead of 
alphanumeric characters allows much more complex actions without additional cognitive or processing 
load. By displaying these symbols on a wearable heads-up display (HUD) in concert with a BCI, 
mobile mental control of external devices is possible.  
This application works by displaying the command options on a Vuzix HUD. If the user would like to 
move the prosthetic, they simply look at the desired command and wait for the P300 response to be 
measured by the OpenBCI EEG system. The signals are then processed on a Rasberry Pi running 
OpenVibe and classified with 85.2% accuracy. After the P300 is detected, the system actuates the 
arm to the position chosen by the user. This technology establishes a platform for complex mobile BCI 
control that can be rapidly adapted for any imaginable dynamic assistive device, from a prosthetic to a 
wheelchair and beyond. 
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Abstract 
The modern day paradigm used for decoding signals in brain-computer interfaces (BCIs) recorded 
with an electroencephalogram (EEG) is the motor imagery (MI) paradigm. To classify EEG signals, it 
is necessary that the recorded signals are sufficiently discriminable. Unfortunately, not all people are 
able to modulate motor imagery tasks very well.  
This work investigates and tests several paradigms on people with disabilities as well as on healthy 
people to obtain sufficiently many discriminable paradigm related conditions. Investigated paradigms 
include MI, imagery of audio, mental subtraction of numbers, word association, spatial navigation, and 
mental rotation. Each of these paradigms will be compared against each other with recent transfer 
learning approaches regarding paradigm specific task enjoyment [1], discriminability in terms of 
decoding performance, and peak latency. The best performing paradigms for individual subjects are 
further improved by using an extension of the adaptive neurofeedback training initially proposed in [2]. 
During neurofeedback training, the application determines the modulation ability of the subjects’ 
paradigm specific signal in the cortical region of interest compared to the relevant resting state 
rhythms and provides real time feedback to the subject on how well he is modulating this signal. 
Initial results of the neurofeedback training show a visible improvement in the log mean band power in 
the cortical region of interest. To obtain significant results more neurofeedback studies have to be 
conducted. 
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Abstract 
Brain-computer interfaces (BCI) based on Electroencopahlography (EEG) have to meet a range of 
requirements. Besides dealing with general problems like variations across subjects, sessions and 
paradigms, usage in non-laboratory conditions induce additional problems to deal with noise, 
calibration and setup. In this work, we study recent developments to create a BCI for non-laboratory 
environments tailored to individual subjects. We first investigate different paradigms based on mental 
tasks, motor imagery and more, to get a discriminative collection of neural activity patterns. A 
customized set of paradigms is then composed depending on task enjoyment [1] and modulation 
abilities. Thereafter, state-of-the-art artifact reduction techniques are examined to enhance the signal 
to noise ratio for the decoding tasks. Band-power features extracted from the preprocessed signals 
ranging from usage of explicit expert knowledge of the paradigms to advanced spatial filters and 
recent EEG structure exploitation [2] are used to create different feature spaces for BCI classifiers. 
Different classification models including recent transfer learning extensions to cope with subject-
specific variations are trained on offline data to obtain a combination of high performing classifiers and 
feature spaces. Finally, we compare three real-time decoding architectures based on hierarchical 
combinations of the classifiers and error correcting codes. Exploitation of temporal correlation of 
incoming signals enable custom trade-offs between sensitivity to noise and certainty of predicted brain 
conditions. First results suggest that different subjects have various strength across different 
paradigm, so that initial transfer learning approaches show promising results in subject-specific 
classifier adaptation. 
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Abstract 
Brain-computer interface (BCI) enables an individual to send messages or control devices, directly 
using their EEG [1]. P300 BCI is based on the visual oddball paradigm, known to elicit the P300 
component of the event-related potentials (ERP), when the user is consciously paying attention to the 
desired stimulus. However, the attention response to external stimulus can be obtained when the 
presented stimuli vary in their significance according to subject’s personal experience. To develop a 
P300 BCI-based system for detection of covert intentions or psycho-emotional states we used photos 
of neutral and emotional human faces. 
Fourteen healthy subjects took part in the experiment. The task in the ‘Emotional Unattended’ mode 
was just to view the center of the screen, where the photos were presented. The task in the ‘Emotional 
Attended’ and ‘Neutral Attended’ modes was to count the number of the target photo appearances 
among others (emotional among neutral ones or neutral among neutral ones). 
We discovered that using emotional faces as stimuli enhanced the amplitude of several ERP 
components. In the ‘Emotional Unattended’ condition the emotional faces were classified as target 
stimuli with the accuracy of 36.4%, which exceeds the random level more than twice. The mean 
classification accuracy in ‘Emotional Attended’ condition was 97.1%. Our results provide evidence that 
using emotional faces as stimuli increases the efficiency of P300 BCI operating and can be used for 
creating ERP-based systems for emotional focuses detection which can be applied in clinics as a part 
of the complex psychological conditions diagnostics and treatment assessment, as well as be used in 
the entertainment area. 
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Abstract 
Brain-computer interface (BCI) is a system that utilizes electrographical correlates of focused brain 
states to establish communication with computer [1]. Here we examine C-VEP BCI paradigm – BCI 
based on code-modulated visual evoked potentials. Within this approach, binary m-sequence is used 
as pattern of visual stimulation. Circular shift is introduced, and resulting shifted sequences are used 
to determine flashing pattern of stimuli. When user gazes at the elements, flashing this pattern, code-
modulated response is generated [2]. This response can be extracted using canonical correlation 
analysis, and used to identify the target that has been chosen by user. 
20 healthy adults participated in the experiment. 32 targets were arranged as a matrix on LCD 
monitor. Each target was altering between black and white with pattern derived from 64-bit binary m-
sequence. The time period of the sequence was 1 second. Two flashing modes were present: “straight 
pattern” and “inverse pattern”, produced by inverting the same m-sequence.  
Accuracy above 97% was achieved by several participants in online mode. Average length of EEG 
sample needed to discriminate between targets was 3.5 seconds. At the offline mode we managed to 
achieve ITR of 150 bits/min, further online testing is required. No significant difference in performance 
was present between ‘straight’ and ‘inverse’ sequences.  Correlation coefficient between learning and 
online samples can rise up to 0.6 in average time of 2 seconds. Difference in characteristics of 
‘straight’ and ‘inverse’ EP are not described with simple positive or negative correlation.  The nature 
of differences between evoked patterns proposes complex mechanism of EP generation. 
We have successfully created BCI based on C-VEP paradigm. The characteristics of this type of BCIs, 
specifically number of commands, ITR and accuracy, make this type of interfaces a viable 
replacement for traditional and well-proven t-VEP P300 BCIs. C-VEP BCI is suitable for 
communication and device control. 
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Abstract 
Mental tasks, like motor imagery induce changes in the electroencephalogram (EEG) which can be 
detected and translated into commands for several applications by a brain-computer interface (BCI). 
However, BCI use is challenging and BCIs do not work satisfactory for everybody. To find the pilot of 
the GRAZ-BCI Racing Team MIRAGE91, we checked the BCI aptitude of a candidate. We share our 
experience and present the first contact screening results of our candidate. The Pilot is a 31 year old 
man, suffering from severe motor impairment due to a brainstem stroke in 2014. For EEG recording 
we used 16 active Ag/AgCl electrodes which were positioned in an equidistant manner over 
sensorimotor areas around C3, Cz and C4 electrode positions. Using the paradigm described in [1], 
we recorded 50 trials per class of motor imagery (MI) of left hand, right hand and feet. In addition we 
performed a second session where we recorded MI of right hand, feet and a rest-condition. For 
analysis, data was filtered between 6 Hz and 35 Hz and artefact-contaminated trials were excluded. In 
a cross validation loop (10 times 5 fold), common spatial patterns (CSP) filters were trained in a one 
versus one class method. We calculated 12 logarithmic bandpower features (first and last two 
projections of each CSP model) and trained a shrinkage regularized linear discriminant analysis with 
features located 2.5 seconds after the cue. 
We successfully performed BCI screening in two sessions. The results in Figure 1 show higher 
accuracies in session 2 (70% vs 45%). In conclusion, a second screening session can be beneficial 
and a prospective pilot should not be disregarded after one session. We credit the differences to 
agitation and the novelty of BCI technology to the user in the first session. 
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Abstract 
For people with high level spinal cord injuries (SCI) and degenerative neurological disorders, brain-
machine interface devices offer an alternative pathway to interact with their environment other than the 
muscular one.  It has previously been noted that the acceptance of this technology among people with 
motor dysfunction is hindered by the lack of system accuracy.  The Deep Learning (DL) approach to 
machine learning has previously shown positive results for image and speech recognition.  Zheng et 
al. [1] have shown that Convolutional Neural Networks can outperform previous techniques in the 
classification of electrocardiogram signals. Yet DL remains little explored for the time series 
classification of electroencephalography (EEG) as the noise inherent in this kind of signal, along with 
the short time windows and high input dimensionality make this task difficult.  
In order to decode these signals, team Imperial will use a machine learning algorithm called 
convolutional neural network (CNN). This algorithm is efficient in the field of image recognition and can 
be adapted to work with time-series. Based on the way the visual cortex recognizes objects, the CNN 
learns patterns in the EEG signals when provided with enough training examples. For each one of the 
possible commands, the network will be fed with thousands of examples of what EEG signals 
corresponding to this particular command may look like. The performance of the whole system does 
not depend only on the accuracy of the algorithm but also on the training of the subject. When playing 
the game, the subject will receive feedback of his actions from the screen. This closed-loop system 
allows him to act indirectly on his brain signals so as they get more and more correlated with the 
intended commands. 
This body of work focuses on the development of convolutional network architectures that may be 
used to better exploit space and time relations of signals in EEG sensor space.  The study assesses 
how this technique may be used to increase the accuracy of the signal measurement.  It also develops 
a means to automatically determine the optimal filters for identifying the most important temporal 
features within our high density 160 channel EEG related to a number of different user related tasks.  
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Abstract 
Non-invasive Brain-Computer interfaces (BCI) enable its users to interact with their environment only 
by thought. A possible BCI application may be to control a computer game solely by e.g. imagery of 
motor tasks. However, this requires several control commands and individual BCI training.  So far, no 
gold standard procedure has been established on how to setup, train and individualize multi-class 
control for end users. In the following, we describe our four stage approach for individualizing and 
adapting BCI technology for an end user. Our approach is based on [1] and the findings of Friedrich et 
al. [2], and extended by personal experience and ideas.  

 
Figure 1: Stage Model 
The procedure is divided into 4 different stages (Figure 1). In stage 1 we perform pre-screening to test 
whether the user is able to understand instructions, is comfortable with BCI technology and is able to 
produce distinct brain patterns. Results of this stage indicate whether continued training with the user 
is reasonable. Stage 2 incorporates a screening of several mental tasks as described in [2], including 
a non-control state. In an offline cross-validation setup of every possible combination, we determine 
the most effective (in terms of accuracy and user acceptance) combination of at least 4 different 
classes. BCI use commonly incorporates feedback, hence in stage 3, the previously identified class 
combination is used to test the user’s compliance to feedback. In the beginning of stage 4, a BCI is 
closely tailored to the user based on the findings in the previous stages. Thereafter the user starts BCI 
training using the actual game. Our procedure provides a promising way to guide users from first 
contact with BCI technology to actually play a videogame by thought. We believe that an evidence 
based procedure, maybe similar to the one presented in this work, is a necessity to introduce BCI 
technology in the daily life of potential end users. 
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Abstract 
Research on Brain-Computer Interface (BCI) systems consists amongst others of preprocessing the 
signals, artifact reduction, dimensionality reduction, applying filters and learning classifiers to generate 
actions that can be sent to actuators of exoskeletons or computer programs [1]. A problem with 
current BCI systems is that performance can decrease rapidly over time, since training can be tiring 
and the signals are non-stationary [2]. Furthermore, the motivation of the subject can drop quickly if no 
success in controlling the BCI system is experienced. Like in everyday life, if we want to learn a skill, 
we need feedback to be able to judge our current performance. A potential solution to the 
aforementioned problem is to develop adaptive training strategies. These strategies use a classifier to 
classify the data provided by the BCI system and an optimal agent which assists the subject to 
modulate and improve her/his signals. Continuous visual feedback about the performance is provided 
during the whole training time. With increasing training time, more and more control is given to the 
subject, reducing the effect of the optimal agent. With this approach, we want to increase the 
convergence rate of the subject's performance at controlling a BCI system. To verify this, we 
developed a simple computer game, closely related to the Cybathlon BCI challenge. In this game, the 
subject has to control an avatar to avoid obstacles by using different commands. The agent’s policy to 
assist the subject is trained through reinforcement learning. Finally, we are interested in the 
generalization abilities of the subject to previously unseen situations. Therefore, we implemented 
different difficulty levels with higher or faster obstacles. Initial results indicate that our system supports 
faster learning of controlling the avatar. To further verify this, we need more subjects and do more 
exhaustive tests with the system. 
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Abstract 
Brain-Computer Interface devices in the field of assistive technology utilize sophisticated and costly 
data acquisition and processing systems [1]. In 2013, the OpenBCI board became available as a cost-
effective open-source EEG data acquisition system. Raspberry Pi is a cost-effective mini-computer 
that can be used to process complex data sets. In the present work we demonstrate the application of 
these two systems in a simulated arm-wrestling game. Implementation of this game serves as a proof 
concept for application of open-source and cost-effective systems in the field of assistive technology. 
Ten participants contributed to this study. Each game occurred between two participants in meditative 
eyes-closed state. EEG signals were collected via a 32-bit OpenBCI board from the O2 scalp region. 
Using Raspberry Pi 3 model-B, raw EEG signals were filtered and processed online. In order to make 
the game impartial and compensate for variances in baseline activity amongst individuals, the ratio of 
spectral density of alpha band (8-12Hz) to 4-40Hz band was computed. Alpha band activity increased 
on average 1.2 times between eyes-open to eyes-closed states [2]. The ratio calculation amongst all 
participants proved the game significantly impartial to individual variety. During the game, the ratios of 
the two participants were calculated at every 1 sec interval, and linearly converted in to voltage signal 
sent to a servo motor connected to two attached prosthetic arms. At each interval, the motor turned 
the arms in favor of the more meditated participant that exhibited the highest ratio. The winner was 
declared the participant whom was able to turn the arms 90°. During multiple trials, it was documented 
that each game provided a 50-50 chance of win for each participant. This study serves as a proof of 
concept that affordable assistive technology could be developed using cost-effective, open-source, 
and easy to use data acquisition and processing systems.  
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Abstract 
MIRAGE91 (Motor Imagery Racing Graz established 1991) is the name of the official Brain-Computer 
Interface (BCI) Racing Team at the Graz University of Technology. Our BCI captures brain activity by 
electroencephalography (EEG) and utilizes changes in oscillatory components caused by four different 
mental tasks to generate control signals. We measure EEG with 32 active Ag/AgCl electrodes and two 
16-channel biosignal 
amplifiers. A standard laptop 
hosts all necessary software 
and also sends the control 
commands via network to 
the Cybathlon Brain Runners 
game. Our custom made 
TOBI SignalServer handles 
data acquisition from the 
amplifiers and provides an 
interface to Matlab/Simulink, 
where signal processing is 
performed [1]. First we filter 
EEG in alpha and beta 
bands separately. Then, we normalize channels to their resting variance to reduce the influence of 
high variance channels. Resting variance is estimated from a prior resting measurement. After that, 
we perform spatial filtering with common spatial patterns (CSP) in a one class vs. one class manner 
and use four filters per CSP model. Then we calculate logarithmic band power over one-second 
sliding windows and use an analytical shrinkage regularized linear discriminant analysis (sLDA) to 
calculate class probabilities. If the class probability of one of the four classes exceeds a threshold for a 
certain time, we send a command to the game. With this BCI, the best run time of our motor impaired 
pilot was 117 seconds and the best run time over all was 107 seconds (10 fields per class, runtime 
without input is 165 seconds). Lessons learned from designing our system will influence future BCI 
system design in terms of robust signal processing at low trials-to-features ratios and BCI 
personalization. 
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Abstract 
For people who have spinal cord injuries (SCI) or degenerative neurological disorders, motor 
impairments negatively affect their ability to perform daily activities. It is estimated that around 10% of 
the world population presents a disability with 10% of these people needing a wheelchair to perform 
daily activities [1].  Most current wheelchair driving interfaces, such as joysticks, prove unsuitable for 
self-control by people with high level SCI or advance neurological degeneration.  In these extreme 
cases it has been noted that while other motor functions may be impaired eye motion remains fully 
active.  As such eye-tracking systems provide hands-free control allowing the users to move 
independently within the surrounding environment [3].  The use of eye-tracking devices for wheelchair 
control is a relatively new field of research.  One main issue highlighted that can affect the efficiency of 
the system is termed “The Midas Touch problem”.  It describes the difficulty of distinguishing voluntary 
from involuntary eye-movements involved in gaze driven control system [2].  
This research project provides an innovative platform using eye-based wheelchair navigation and 
avoiding the Midas Touch problem encountered by current technologies.  The report details the 
development of a natural eye tracking decoder which aims to avoid the reliance on extra gaze 
gestures (such as winking or blinking) or the use of imposed gaze patterns whilst controlling a 
wheelchair.  Experiments are established and data analysed using a commercial eye-tracker camera 
unit and a Microsoft Kinect.  The latter is used to provide information regarding the surrounding 
environment, giving a reference to determine if the user’s gaze is intended as a driving input or not.  
Data analysis is used to identify the factors influencing the natural decoder (e.g. subject’s 
characteristics) which may be used to enable an extra gaze gesture if necessary to improve the 
efficiency of the control system. 
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Abstract 
Modern technologies enable persons with disabilities to perform activities of daily living, thereby 
significantly improving quality of their lives. Robotic or powered wheelchairs, for example, improve 
mobility. Wheelchair electric drive facilitates mobility of physically impaired people. However, many of 
these devices, despite the high cost, do not allow overcoming of even the most common obstacles 
(steps, curbs, etc.) that occur in everyday life. The aim and motivation for the development of a new 
wheelchair concept was a desire for the improvement of existing solutions with new approaches and 
the consequent positive effects on the mobility of wheelchair users. 
The solution is a hybrid powered wheelchair concept that integrates the best characteristics of wheels 
and tracks. The main propulsion system consists of four independently controlled and steered in-
wheel motors. Such configuration enables best maneuverability, stability, power and velocity. Large 
wheels also allow the user to overcome most of everyday obstacles, such as curbs. However, 
overcoming of steep terrain and stairs would not be possible without a tracks system. Two 
independently controlled tracks with adjustable height from the ground via a two-degree-of-freedom 
(DOF) mechanism (enables also adjustment of tracks angle relative to the wheelchair) are mounted 
between the wheels. In order to keep the pilot in a comfortable position during climbing over steep 
obstacles, the chair is augmented with an inclination mechanism. In total the wheelchair has thirteen 
DOF (four wheels with 2 DOF each, pair of tracks and a reclining chair). They are all controlled by the 
pilot. 
Safety of the pilot is guaranteed through the mechanical design (four-wheel platform with low center of 
gravity), selection of components (limited power and speed of actuators, brakes), sensor redundancy 
for all critical actuators, standardized electronics for control and software-implemented safety 
mechanisms.    
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